DCGJ666
码龄7年
关注
提问 私信
  • 博客:117,771
    社区:28
    117,799
    总访问量
  • 93
    原创
  • 1,592,768
    排名
  • 34
    粉丝
  • 0
    铁粉

个人简介:初步进入代码奇妙世界的小白

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2017-10-07
博客简介:

DCGJ666的博客

查看详细资料
个人成就
  • 获得76次点赞
  • 内容获得65次评论
  • 获得427次收藏
  • 代码片获得685次分享
创作历程
  • 31篇
    2022年
  • 40篇
    2021年
  • 10篇
    2020年
  • 10篇
    2019年
  • 2篇
    2018年
成就勋章
TA的专栏
  • 深度学习
    39篇
  • Pytorch复习
    25篇
  • python魔法
    4篇
  • vscode
    1篇
  • 配置工具
    3篇
  • 发表论文
    1篇
  • 语义分割
    1篇
  • 人体姿态识别
    2篇
  • 目标检测
    1篇
  • TX2
  • 配置pytorch
    1篇
  • 人脸识别
    1篇
  • pycharm
    1篇
  • 残差网络
    1篇
  • 代码补全
    1篇
  • MFC
    1篇
  • C++
    5篇
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

数据结构学习

选择题注意区分逻辑结构和存储结构的区别,不要混为一谈,尤其是选择题,题目是逻辑结构时,选项不能选存储结构定义: 一组地址连续的存储单元依次存储线性表中的数据元素,从而使得逻辑上相邻的两个元素在物理位置上也相邻。注: 线性表中的任一数据元素都可以随机存取,所以线性表的顺序存储结构是一种随机存取的存储结构。通常用高级程序设计语言中的数组来描述线性表的顺序存储结构。动态分配顺序表最主要的特点是随机访问,即通过首地址和元素序号可在实践O(1)内找到指定的元素。顺序表的存储密度高,每个结点只存储数据元素
原创
发布博客 2022.10.06 ·
1047 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

软件工程总结

需求”是对外可见的系统特性。领域性质:无论系统存在与否均存在的应用领域的性质。需求:由系统的存在而使能的应用领域性质规约描述:描述系统为满足需求而应具有的行为需求证明的标准:运行在某台机器上的程序满足规约描述;针对给定的领域性质,规约描述满足需求好的需求是可以度量的,能给出项目成功的必要条件单个需求项的质量(准确,正确,明确,可行,可证)整个需求集合的质量(现实,精确,全面,一致)系统建模工具的主要功能可视化模型表达UML模型Web模型,数据库模型用户自定义模型。
原创
发布博客 2022.10.06 ·
698 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

三维重建总结

三维场景渲染与重建是利用场景的图形或图像等信息渲染出特定观测视点的场景图像和重建出三维场景的结构模型,它是计算机视觉中的一个重要的研究课题,开展该方面的研究对于模型识别、虚拟现实、探险救援、军事侦察等都具有非常重要的意义。经典的三维场景渲染与重建方法按照基本处理单位的不同分为:以像素点作为基本处理单位逐点进行渲染与重建,该方法获得的渲染图像和重建模型比较真实,但是速度较慢;以网格作为基本处理单位进行渲染与重建,该计算速度较快,基本能满足实时渲染的要求,但是当网格内包含目标边界时导致渲染图像和重建模型失真。另
原创
发布博客 2022.10.06 ·
1950 阅读 ·
0 点赞 ·
0 评论 ·
8 收藏

2022多目标跟踪论文阅读总结

为了缓解检测噪声,提出了一种新的特征存储和更新策略EMA bank,以同时保持不同的特征转态和特征变化的信息。成对的关联是有效的,但是缺乏一下明确的整体轨迹模型,有时会与严重的遮挡或强烈的外观变化导致失败。,提出了一种在线时间自适应卷积的方法,利用时间信息,通过根据前一帧动态校准卷积权值来增强空间特征。首先对检测图和轨迹图进行匹配,图的匹配问题是使匹配的顶点与由这些顶点连接的对应边之间的相似性最大化。2.相似性映射的细化。:最大化所有匹配顶点之间的顶点亲和度,并最小化所有匹配边之间的边权值的差异。
原创
发布博客 2022.10.06 ·
1505 阅读 ·
3 点赞 ·
1 评论 ·
10 收藏

C++小知识

/ 把rhs的成员加到this对象的成员上 revenue += rhs . revenue;return * this //返回调用该函数的对象 }定义非成员函数的方式与定义其他函数一样,通常把函数的声明和定义分离开来。如果函数在概念上属于类但是不定义在类中,则它一般应与类声明在同一个头文件内。在这种方式下,用户使用接口的任何部分都只需要引入一个文件。// 把lhs的数据成员拷贝给sum sum . combine(rhs);//把rhs的数据成员加到sum当中 return sum;}
原创
发布博客 2022.10.06 ·
876 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

匈牙利算法与卡尔曼滤波

首先,对匈牙利算法解决的问题进行概述:实际中,会遇到这样的问题,有n项不同的任务,需要n个人分别完成其中的1项,每个人完成任务的时间不一样。于是就有一个问题,如何分配任务使得花费时间最少。通俗来讲,就是n*n矩阵中,选取n个元素,每行每列各有一个元素,使得和最小。可以抽象成一个矩阵,如果是求和最小问题,那么这个矩阵就叫做花费矩阵(Cost Matrix);如果要求的问题是使之和最大化,那么这个矩阵就叫做利益矩阵(Profit Matrix).
原创
发布博客 2022.10.06 ·
1124 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

图神经网络基础知识

在向量空间中,所有对象的向量都是互相正交的,那么它们两两之间的相似度为0. 此外,独热向量的维度可能会非常高并且非常稀疏,直接使用的话也非常困难。在使用多层GCN之后,节点的区分性变得越来越差,节点的表示向量趋于一致,这使得相应的学习任务变得更加困难。之前介绍的所有GNN的变体模型中,都没有显式地考虑节点之间关系的不同,相较于同构图,现实生活中的图数据往往是异构的,即图里面存在不止一种类型的关系。现在常使用deepgcn.上的特征向量,k表示第k次消息传播,在实际编程中,一般和模型中的层的概念等价。
原创
发布博客 2022.10.06 ·
912 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

深度学习面经总结

多个有2种,一种的dataparallel,一种的distributeddataparallel。DP的话是每张卡把梯度汇总给主卡,然后主卡做反向传播更新再把参数发给其他卡DDP是大家把梯度汇总之后各自在各自的卡里面更新。DDP是多进程,DP是单进程多线程,避免了GIL带来的性能开销DDP是大家各自传播梯度后,用ring all reduce做平均并传会给大家,然后大家各自做更新。
原创
发布博客 2022.10.06 ·
823 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

视觉传感器总结

视觉传感器总结激光雷达优势结构组成分类激光雷达的性能评估3D深度传感ToF工作原理测量δT\delta{T}δT方法连续波方法脉冲方法立体视觉优点缺点结构光优点缺点惯性导航系统简介惯性测量单元激光雷达与雷达工作原理类似,激光雷达通过测量激光信号的时间差和相位差来确定位置,但其最大优势在于能够利用多普勒成像技术,创建出目标清晰的3D图像。激光雷达通过发射和接收激光束,分析激光遇到目标对象后的折返时间,计算出到目标对象的相对距离,并利用此过程中收集到的目标对象表面大量密集的点的三维坐标、反射率和纹理等信息,
原创
发布博客 2022.05.31 ·
4483 阅读 ·
1 点赞 ·
0 评论 ·
21 收藏

机器学习—马尔科夫蒙特卡洛

机器学习—MCMC蒙特卡洛方法MCMC平稳分布MCMC是一种随机的近似推断,其核心就是基于采样的随机近似方法蒙特卡洛方法。对于采样任务来说,有下面一些常用的场景:采样作为任务,用于生成新的样本求和/求积分采样结束后,我们需要评价采样出来的样本点是不是好的样本集:样本趋向于高概率的区域样本之间必须独立具体采样中,采样时一个困难的过程:无法采样得到归一化因子,即无法直接对概率p(x)=1Zp^(x)p(x)=\frac{1}{Z}\hat{p}(x)p(x)=Z1​p^​(x)采样,常常需要对
原创
发布博客 2022.05.25 ·
690 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器学习——变分推断

机器学习——变分推断基于平均场假设的变分推断SGVI我们已经知道概率模型可以分为,频率派的优化问题和贝叶斯派的积分问题。从贝叶斯角度来看推断,对于x^\hat{x}x^这样的新样本,需要得到:p(x^∣X)=∫θp(x^,θ∣X)dθ=∫θp(θ∣X)p(x^∣θ,X)dθp(\hat{x}|X)=\int_\theta p(\hat{x},\theta|X)d\theta=\int_\theta p(\theta|X)p(\hat{x}|\theta,X)d\thetap(x^∣X)=∫θ​p(x^,
原创
发布博客 2022.05.24 ·
282 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

机器学习—高斯混合模型

机器学习—高斯混合模型极大似然估计EM求解GMM为了解决高斯模型的单峰性的问题,我们引入多个高斯模型的加权平均来拟合多峰数据:p(x)=∑k=1KαkN(μk,Σk)p(x)=\sum_{k=1}^K\alpha_k\mathcal{N}(\mu_k,\Sigma_k)p(x)=k=1∑K​αk​N(μk​,Σk​)引入隐变量z,这个变量表示对应的样本x属于一个高斯分布,这个变量时一个离散的随机变量:p(z=i)=pi,∑i=1kp(z=i)=1p(z=i)=p_i,\sum_{i=1}^kp(z=
原创
发布博客 2022.05.23 ·
486 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器学习——期望最大(EM)

机器学习——期望最大(EM)广义EMEM的推广期望最大算法的目的是解决具有隐变量的混合模型的参数估计(极大似然估计)。MLE对p(x∣θ)p(x|\theta)p(x∣θ)参数的估计记为:θMLE=argmaxθlogp(x∣θ)\theta_{MLE}=argmax_{\theta}logp(x|\theta)θMLE​=argmaxθ​logp(x∣θ)。EM算法对这个问题的解决方法是采用迭代的方法:θt+1=argmaxθ∫zlog⁡[p(x,z∣θ)]p(z∣x,θt)dz=Ez∣x,θt[lo
原创
发布博客 2022.05.22 ·
325 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器学习——概率图模型

机器学习——概率图模型有向图-贝叶斯网络概率图模型使用的图的方式表示概率分布。为了在图中添加各种概率,首先总结一下随机变量分布的一些规则:Sum Rule:p(x1)=∫p(x1,x2)dx2Product Rule:p(x1,x2)=p(x1∣x2)p(x2)Chain Rule:p(x1,x2,⋯ ,xp)=∏i=1pp(xi∣xi+1,xi+2⋯xp)Bayesian Rule:p(x1∣x2)=p(x2∣x1)p(x1)p(x2)Sum\ Rule:p(
原创
发布博客 2022.05.22 ·
1536 阅读 ·
2 点赞 ·
0 评论 ·
1 收藏

机器学习——指数族分布

机器学习——指数族分布一维高斯分布充分统计量和对数配分函数的关系充分统计量和极大似然估计最大熵指数族是一类分布,包括高斯分布、伯努利分布、二项分布、泊松分布、Beta分布、Dirichlet分布、Gamma分布等一系列分布。指数族分布可以写为统一的形式:p(x∣η)=h(x)exp⁡(ηTϕ(x)−A(η))=1exp⁡(A(η))h(x)exp⁡(ηTϕ(x))p(x|\eta)=h(x)\exp(\eta^T\phi(x)-A(\eta))=\frac{1}{\exp(A(\eta))}h(x)\
原创
发布博客 2022.05.20 ·
1537 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

机器学习——支持向量机

机器学习——支持向量机约束优化问题KKT条件Hard-margin SVMSoft-margin SVMKernel Method支撑向量机(SVM)算法三大宝:间隔、对偶、核技巧支持向量机(SVM)算法在分类问题中有着重要地位,其主要思想是最大化两类之间的间隔。按照数据集的特点:线性可分问题,如之前的感知机算法处理的问题线性可分,只有一点点错误点,如感知机算法发展出来的Pocket算法处理问题非线性问题,完全不可分,如在感知机问题发展处理的多层感知机和深度学习这三种情况对于SVM分别有下面三
原创
发布博客 2022.05.19 ·
483 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

机器学习——降维

机器学习——降维线性降维-主成分分析PCA损失函数SVD与PCoAp-PCA小结降维的思路来源于维度灾难的问题,我们知道n维球的体积为:CRnCR^nCRn那么在求体积与边长为2R2R2R的超立方体比值为:lim⁡n→0CRn2nRn=0\lim\limits_{n\rightarrow0}\frac{CR^n}{2^nR^n}=0n→0lim​2nRnCRn​=0这就是所谓的维度灾难,在高维数据中,主要样本都分布在立方体的边缘,所以数据集更加稀疏。(因为,维度越高的球,靠近边缘的空间越大,如果数
原创
发布博客 2022.05.18 ·
540 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

机器学习——线性分类

机器学习——线性分类线性分类二分类-硬分类-感知机算法二分类-硬分类-线性判别分析LDA二分类-软分类-概率判别模型-Logistic回归二分类-软分类-概率生成模型-高斯判别分析GDA二分类-软分类-概率生成模型-朴素贝叶斯线性分类对于分类任务,线性回归模型就无能为力了,但是我们可以在线性模型的函数进行后再加入一层激活函数,这个函数是非线性的,激活函数的反函数叫做链接函数。我们有两种线性分类的方式:硬分类,我们直接需要输出观测对应的分类。这类模型的代表为:线性判别分析(Fisher判别)感
原创
发布博客 2022.05.17 ·
473 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

机器学习——正则化

机器学习——正则化前言贝叶斯角度L1正则化L2正则化推导验证L1 LassoL2 Ridge(权重衰减)前言在实际应用中,如果样本容量不远远大于样本的特征维度,很可能造成过拟合,对这种情况,可以采用以下三个解决方式:丰富训练集数据特征选择,如PCA算法(降低维度)正则化正则化一般是在损失函数上加入正则化项(表示模型的复杂度对模型的惩罚)L1正则化——>主要是使得参数矩阵稀疏化,用于减少模型复杂度:L1:argminwL(w)+λ∣∣w∣∣1,λ>0L1:argmin_wL(w)
原创
发布博客 2022.05.12 ·
496 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

机器学习——马氏距离

机器学习——马氏距离前言马氏距离马氏距离的推导前言在介绍马氏距离之前,我们首先看如下概念:方差:方差是标准差的平方,而标准差的意义是数据集中各个点到均值点距离的平均值。反应的是数据的离散程度协方差:标准差与方差是描述一维数据的,当存在多维数据时,我们通常需要知道每个维数的变量中间是否存在关联。**协方差就是衡量多维数据集中,变量之间相关性的统计量。**比如说,一个人的身高与他的体重的关系,这就需要用协方差来衡量。如果两个变量之间的协方差为正值,则这两个变量之间存在正相关,若为负值,则为负相关。协
原创
发布博客 2022.05.11 ·
1512 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏
加载更多