一、项目目标与技术挑战
-
目标: 针对“不可成药”的KRAS突变,发现特异性抑制剂并解析其机制。
-
挑战: 缺乏能精准模拟肿瘤发生且适用于高通量筛选的模型。
二、核心技术路线拆解
-
类器官平台构建(模型层):
-
遗传工程: 利用Cre-loxP系统,构建系列同基因背景的小鼠胰腺类器官,包括WT(野生型)、KC(仅KRASG12D)、KPC(KRASG12D + p53突变)、KPSC(加入Smad4突变)等,模拟肿瘤演进。
-
优势: 变量控制严格,背景干净,非常适合机制研究。
-
-
高通量药物筛选(应用层):
-
规模: 对超过6000种化合物进行筛选。
-
指标: 以类器官细胞活力为核心读数。
-
发现: 鉴定出马来酸哌哌克昔林对KRASG12D突变型具有特异性杀伤作用。
-
-
机制解析(数据层):
-
技术: 对药物处理前后的类器官进行单细胞RNA测序。
-
分析: 通过差异表达分析、通路富集分析(如GO, KEGG),发现胆固醇合成通路显著富集。
-
锁定靶点: 聚焦到该通路的核心转录因子SREBP2,并验证其是药物的直接作用节点。
-
三、给开发者的启示
这项研究是一个多学科技术栈集成的典范,涉及遗传工程、细胞模型、高通量筛选和生物信息学。对于生信开发者而言,它凸显了分析流程的标准化和可重复性的重要性。
处理单细胞测序数据需要专业的分析流程和稳定的计算环境。DCS Cloud智能生信平台提供了从原始数据到高级分析(如细胞分群、拟时序、差异分析)的一站式环境,其模块化设计和可视化结果输出,能显著提升此类药物研发项目中数据分析的效率和可靠性。
参考文献:
Duan X, et al. A pancreatic cancer organoid platform identifies an inhibitor specific to mutant KRAS. Cell Stem Cell. 2023.
1199

被折叠的 条评论
为什么被折叠?



