《无监督真实世界图像超分辨率的成对距离蒸馏》论文笔记
背景
标准的SISR(singal image super-resolution) 模型处理预定义的下采样核,例如双三次插值。但现实场景中的SISR——RWSR(real-world super resolution) 包含了LR图像中未知的退化,包括:模糊、噪声和JPEG压缩伪影以及不同的组合。
generalist通用模型
1.合成大量严重退化的成对训练数据;
2.复杂的退化管道使得模型能够泛化到各种未知条件。
specialist专家模型
1.用于训练的LR-SR数据对是通过使用固定核分解HR图像来创建的;
2.擅长特定输入退化。
本文贡献
1.无监督RWSR的蒸馏:将通用模型和专家模型进行结合;
2.提出了一个新的两两距离蒸馏框架,强调传递模型内和模型间的距离,以提高专家模型在显示场景中的表现;
3.与SOTA比,有所提升。
方法
定义
:较简单的退化集
:较复杂的退化集
(最简单情况下,)
:专家模型
:通用模型
是LR图像集,具有相同的未知退化
。
是另一组LR图像集,使用
特定退化生成。
其中,擅长
,而
在
和
上表现都一般。
目标
借助使
适应
,也就是说,使用通用模型来让专家模型能够适应具有未知退化的数据,是的专家模型在真实世界数据集上也能有较好的表现。
一种朴素的蒸馏方法
让
模仿
对未标记输入进行预测
,
,
其中,是ground-truth,
是监督损失。
是
的蒸馏和主要目标间平衡的比例因子。
缺点
完全依赖于通用模型的信息,无法同时利用两种模型的优势。
成对距离蒸馏(Pairwise Distance Distillation, PDD)
使用和
对
和
进行预测,得到:
让专家模型模仿通用模型的模型内关系,也就是说,将的现实世界预测的低级特征
推广到与其综合预测
相似。
假设满足这种相似性,并得出以下关于预测之间VGG特征距离的用izhixing:
1.同一输入对预测的模型内距离在和
之间应该是一致的;
2.单一输入预测的模型间距离应该在合成域和实际域之间保持一致。
理由如下:1、首先,同一模型预测的低层特征是一致的。因此,同一模型预测或
之间的距离,即模型间距离,主要反映由于它们接近的低层特征而导致的语义差异。由于应用的SR模型不应该改变语义,因此
和
的模型内距离应该是一致的;2、其次,注意到2种模型预测的低层特征不同,如:
。给定样本的2个预测
或
之间的距离,即模型间距离捕获了低级特征差异,因为对于相同的输入,语义信息保持不变。又由于单个模型中低级特征应该是相似的,因此合成样本和真实样本的模型间距离也应是一致的。
★★★本研究中,将上述的2种一致性构建为模型内和模型间距离的蒸馏。
研究的方法鼓励的真实世界预测
具有与其合成预测
相似的低级特征,并将其作为高质量图像的参考(这里的高质量图像是HR生成的LR?还是生成的HR? 没有弄明白)。
模型内距离蒸馏
模型内蒸馏距离加强了同一模型的预测之间的一致性。
(模型内距离) (
模型内距离)
(为VGG19的第i残差块的第j层。)
通过最小化交叉熵(Cross-Entropy, CE) 测量的
和
之间的差异来强制两者之间的一致性:
为特征映射空间索引。
为Softmax激活函数。
模型间距离蒸馏
模型间距离蒸馏加强了不同模型预测之间低层特征变化的一致性。
(的特征距离) (
的特征距离)
(表示低级特征的差异)
为Gram矩阵,计算矢量化特征映射沿通道维数的相关性。
通过最小化(
之间的
范数)来确保模型间距离的一致性。
(
范数定义为矩阵A各项元素的绝对值平方的总和开根)
完整方法
完全优化了
的监督损失和
的无监督损失
★监督损失
监督损失保持了合成的退化的专业化,减少了对蒸馏的过拟合。
为wavelet-based loss,
为感知损失,
为对抗训练的生成损失。
★无监督损失
无监督损失在没有ground-truth的情况下,选择优化一致性作为正则化器。
为了充分利用鉴别器的真实感知识,在中加入了生成损失
。
因此,无监督损失为
色彩校正
由于特征空间内距离的正则化,会经常导致颜色的偏移。
解决:将每个颜色通道的均值和方差与相应输入通道的均值和方差归一化。