HDU1232畅通工程(并查集模板)

题目链接

Problem Description

某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇。省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可)。问最少还需要建设多少条道路?

Input

测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是城镇数目N ( < 1000 )和道路数目M;随后的M行对应M条道路,每行给出一对正整数,分别是该条道路直接连通的两个城镇的编号。为简单起见,城镇从1到N编号。
注意:两个城市之间可以有多条道路相通,也就是说
3 3
1 2
1 2
2 1
这种输入也是合法的
当N为0时,输入结束,该用例不被处理。

Output

对每个测试用例,在1行里输出最少还需要建设的道路数目。

Sample Input

4 2
1 3
4 3
3 3
1 2
1 3
2 3
5 2
1 2
3 5
999 0
0
Sample Output
1
0
2
998

 

主要思想:并查集是一种树型的高级数据结构,主要用于处理不相交集合的合并及查询问题。这道题是并查集的一个模板题。n个点连通至少需要n-1条边,所以定义cnt的初始值为n-1。每合并一个集合即证明连通一条边,cnt--。其他详解见代码注释。

#include<cstdio> 
#include<iostream>
using namespace std;
#define MAX_N 1005
int par[MAX_N];//父亲 
int cnt;
void init(int n){//初始化n+1个元素 
	for(int i=0;i<=n;i++){//注意数组是从0开始的,但是城镇编号是从1开始的 
		par[i]=i;
	}
	cnt=n-1; 
}
int find(int x){//查询树的根 
	if(par[x]==x)
		return x;
	else
		return par[x]=find(par[x]);
}
void unite(int a,int b){//合并集合 
	int x=find(a);
	int y=find(b);
	if(x!=y)
	{
		par[x]=y;	//将独立集合合并起来 
		cnt--;
	}
}
int main(){
	int N,M;
	while(scanf("%d",&N)!=EOF&&N!=0){
		scanf("%d",&M);
		init(N);
		int a,b;
		for(int i=0;i<M;i++){
			scanf("%d%d",&a,&b);
			unite(a,b);
		}
		printf("%d\n",cnt);
	}
	return 0;
}

 

展开阅读全文

没有更多推荐了,返回首页