【分布式ID生成器】

架构 专栏收录该内容
6 篇文章 0 订阅

【分布式ID生成器】


【博文目录>>>】


【工程下载>>>】


一、需求缘起


几乎所有的业务系统,都有生成一个唯一记录标识的需求,例如:

  • 消息标识:message-id

  • 订单标识:order-id

  • 帖子标识:tiezi-id

这个记录标识往往就是数据库中的主键,数据库上会建立聚集索引(cluster index),即在物理存储上以这个字段排序。

这个记录标识上的查询,往往又有分页或者排序的业务需求,例如:

  • 拉取最新的一页消息:select message-id/ order by time/ limit 100

  • 拉取最新的一页订单:select order-id/ order by time/ limit 100

  • 拉取最新的一页帖子:select tiezi-id/ order by time/ limit 100

所以往往要有一个time字段,并且在time字段上建立普通索引(non-cluster index)。普通索引存储的是实际记录的指针,其访问效率会比聚集索引慢,如果记录标识在生成时能够基本按照时间有序,则可以省去这个time字段的索引查询:

select message-id/ (order by message-id)/limit 100

强调,能这么做的前提是,message-id的生成基本是趋势时间递增的。
这就引出了记录标识生成(也就是上文提到的三个XXX-id)的两大核心需求:

  • 全局唯一

  • 趋势有序

这也是本文要讨论的核心问题:如何高效生成趋势有序的全局唯一ID。

二、常见方法、不足与优化


方法一:使用数据库的 auto_increment 来生成全局唯一递增ID

优点:

  • 简单,使用数据库已有的功能

  • 能够保证唯一性

  • 能够保证递增性

  • 步长固定

缺点:

  • 可用性难以保证:数据库常见架构是一主多从+读写分离,生成自增ID是写请求,主库挂了就玩不转了

  • 扩展性差,性能有上限:因为写入是单点,数据库主库的写性能决定ID的生成性能上限,并且难以扩展

改进方法:

  • 冗余主库,避免写入单点

  • 数据水平切分,保证各主库生成的ID不重复

这里写图片描述

如上图所述,由1个写库变成3个写库,每个写库设置不同的auto_increment初始值,以及相同的增长步长,以保证每个数据库生成的ID是不同的(上图中库0生成0,3,6,9…,库1生成1,4,7,10,库2生成2,5,8,11…)

改进后的架构保证了可用性,但缺点是:

  • 丧失了ID生成的“绝对递增性”:先访问库0生成0,3,再访问库1生成1,可能导致在非常短的时间内,ID生成不是绝对递增的(这个问题不大,目标是趋势递增,不是绝对递增)

  • 数据库的写压力依然很大,每次生成ID都要访问数据库
    为了解决上述两个问题,引出了第二个常见的方案。

方法二:单点批量ID生成服务

分布式系统之所以难,很重要的原因之一是“没有一个全局时钟,难以保证绝对的时序”,要想保证绝对的时序,还是只能使用单点服务,用本地时钟保证“绝对时序”。

数据库写压力大,是因为每次生成ID都访问了数据库,可以使用批量的方式降低数据库写压力。

这里写图片描述

如上图所述,数据库使用双master保证可用性,数据库中只存储当前ID的最大值,例如0。

ID生成服务假设每次批量拉取6个ID,服务访问数据库,将当前ID的最大值修改为5,这样应用访问ID生成服务索要ID,ID生成服务不需要每次访问数据库,就能依次派发0,1,2,3,4,5这些ID了。

当ID发完后,再将ID的最大值修改为11,就能再次派发6,7,8,9,10,11这些ID了,于是数据库的压力就降低到原来的1/6。

优点:

  • 保证了ID生成的绝对递增有序

  • 大大的降低了数据库的压力,ID生成可以做到每秒生成几万几十万个

缺点:

  • 服务仍然是单点

  • 如果服务挂了,服务重启起来之后,继续生成ID可能会不连续,中间出现空洞(服务内存是保存着0,1,2,3,4,5,数据库中max-id是5,分配到3时,服务重启了,下次会从6开始分配,4和5就成了空洞,不过这个问题也不大)

  • 虽然每秒可以生成几万几十万个ID,但毕竟还是有性能上限,无法进行水平扩展

改进方法:

单点服务的常用高可用优化方案是“备用服务”,也叫“影子服务”,所以我们能用以下方法优化上述缺点(1):

这里写图片描述

如上图,对外提供的服务是主服务,有一个影子服务时刻处于备用状态,当主服务挂了的时候影子服务顶上。

这个切换的过程对调用方是透明的,可以自动完成,常用的技术是vip+keepalived,具体就不在这里展开。

另外,ID-gen-service也可以实施水平扩展,以解决上述缺点(3),但会引发一致性问题。

方法三:uuid/guid

不管是通过数据库,还是通过服务来生成ID,业务方Application都需要进行一次远程调用,比较耗时。

有没有一种本地生成ID的方法,即高性能,又时延低呢?

uuid是一种常见的方案:

string ID =GenUUID();

优点:

  • 本地生成ID,不需要进行远程调用,时延低

  • 扩展性好,基本可以认为没有性能上限

缺点:

  • 无法保证趋势递增

  • uuid过长,往往用字符串表示,作为主键建立索引查询效率低,常见优化方案为“转化为两个uint64整数存储”或者“折半存储”(折半后不能保证唯一性)

方法四:取当前毫秒数

uuid是一个本地算法,生成性能高,但无法保证趋势递增,且作为字符串ID检索效率低,有没有一种能保证递增的本地算法呢?
取当前毫秒数是一种常见方案:
uint64 ID = GenTimeMS();

优点:

  • 本地生成ID,不需要进行远程调用,时延低

  • 生成的ID趋势递增

  • 生成的ID是整数,建立索引后查询效率高

缺点:

  • 如果并发量超过1000,会生成重复的ID

这个缺点要了命了,不能保证ID的唯一性。当然,使用微秒可以降低冲突概率,但每秒最多只能生成1000000个ID,再多的话就一定会冲突了,所以使用微秒并不从根本上解决问题。

方法五:类snowflake算法

snowflake是twitter开源的分布式ID生成算法,其核心思想为,一个long型的ID:
- 41bit作为毫秒数

  • 10bit作为机器编号

  • 12bit作为毫秒内序列号

算法单机每秒内理论上最多可以生成1000*(2^12),也就是400W的ID,完全能满足业务的需求。

借鉴snowflake的思想,结合各公司的业务逻辑和并发量,可以实现自己的分布式ID生成算法。

举例:假设公司ID生成器服务的需求如下:

  • 单机高峰并发量小于1W,预计未来5年单机高峰并发量小于10W

  • 有2个机房,预计未来5年机房数量小于4个

  • 每个机房机器数小于100台

  • 目前有5个业务线有ID生成需求,预计未来业务线数量小于10个

分析过程如下:

  • 高位取从2017年1月1日到现在的毫秒数(假设系统ID生成器服务在这个时间之后上线),假设系统至少运行10年,那至少需要10年*365天*24小时*3600秒*1000毫秒=320*10^9,差不多预留39bit给毫秒数

  • 每秒的单机高峰并发量小于10W,即平均每毫秒的单机高峰并发量小于100,差不多预留7bit给每毫秒内序列号

  • 5年内机房数小于4个,预留2bit给机房标识

  • 每个机房小于100台机器,预留7bit给每个机房内的服务器标识

  • 业务线小于10个,预留4bit给业务线标识

这样设计的64bit标识,可以保证:

  • 每个业务线、每个机房、每个机器生成的ID都是不同的

  • 同一个机器,每个毫秒内生成的ID都是不同的

  • 同一个机器,同一个毫秒内,以序列号区区分保证生成的ID是不同的

将毫秒数放在最高位,保证生成的ID是趋势递增的

这里写图片描述

缺点:

  • 由于“没有一个全局时钟”,每台服务器分配的ID是绝对递增的,但从全局看,生成的ID只是趋势递增的(有些服务器的时间早,有些服务器的时间晚)

六、改进方案

条件:

  • 单机高峰并发量小于1W,预计未来5年单机高峰并发量小于10W

  • 机器运行20年

  • 最多不超过50个区域独立布署应用

  • 每个区域的应用数不超过100个

七、实现

  • 需要40位用于记录毫秒数

  • 需要6位记录区域

  • 需要7位记录毫秒内的序列号

  • 需要7位记录应用编号

  • 剩下4位进行保留

这里写图片描述

七、代码

package wjc.example;

import java.util.ArrayList;
import java.util.GregorianCalendar;
import java.util.List;
import java.util.concurrent.atomic.AtomicInteger;

/**
 * <pre>
 *
 * 需要40位用于记录毫秒数
 * 需要6位记录区域
 * 需要7位记录毫秒内的序列号
 * 需要7位记录应用编号
 * 剩下4位进行保留
 *
 *  ---- ---------------------------------------- ------ ------- -------
 * |4   |40                                      |6     |7      |7      |
 *  ---- ---------------------------------------- ------ ------- -------
 * </pre>
 * Author: 王俊超
 * Date: 2017-10-31 08:05
 * Blog: http://blog.csdn.net/derrantcm
 * Github: https://github.com/wang-jun-chao
 * All Rights Reserved !!!
 */
public class DistributedIdGenerator {
    private static final long DEFAULT = 0;
    // 2017-01-01 00:00:00.000距1900-01-01 00:00:00毫秒数
    private static final long START = new GregorianCalendar(2017, 0, 1, 0, 0, 0).getTimeInMillis();

    /**
     * 用于生成1毫秒内的序号,值的范围[0, 127]
     */
    private final AtomicInteger seq = new AtomicInteger(0);

    /**
     * 区域编号
     */
    private long region = DEFAULT;

    /**
     * 应用编号
     */

    private long application = DEFAULT;
    /**
     * 保留位
     */
    private long reservation = DEFAULT;

    public DistributedIdGenerator() {
    }

    public DistributedIdGenerator(long region, long application, long reservation) {
        this.region = region;
        this.application = application;
        this.reservation = reservation;
    }

    public long getRegion() {
        return region;
    }

    public void setRegion(byte region) {
        this.region = region;
    }

    public long getApplication() {
        return application;
    }

    public void setApplication(byte application) {
        this.application = application;
    }

    public long getReservation() {
        return reservation;
    }

    public void setReservation(byte reservation) {
        this.reservation = reservation;
    }

    /**
     * 获取从2017.01.01 00:00:00以来的毫秒数
     *
     * @return
     */
    public long getMillisecond() {
        return System.currentTimeMillis() - START;
    }

    /**
     * 下一个序列号
     *
     * @return
     */
    public long getNextNumber() {
        int n = seq.getAndIncrement();
        // 在1毫秒内生成的序列号只占7位,值[0, 127],超过要重新开始
        seq.compareAndSet(128, 0);
        return n;
    }

    public long next() {
        return (getReservation() << (40 + 6 + 7 + 7))   // 保留位
                + ((getMillisecond() << (6 + 7 + 7)))   // 当前距2017.01.01 00:00:00以来的毫秒数
                + (getRegion() << (7 + 7))              // 区域编号
                + (getApplication() << 7)               // 保留位编号
                + getNextNumber();                      // 毫秒内的序号
    }


    private List<Long> next(int size) {
        List<Long> result = new ArrayList<>();

        for (int i = 0; i < size; i++) {
            result.add(next());
        }

        return result;
    }

    public static String toString(long n) {
        StringBuilder builder = new StringBuilder(64);
        String s = Long.toBinaryString(n);
        for (int i = 0; i < 64 - s.length(); i++) {
            builder.append(0);
        }
        builder.append(s);
        return builder.toString();
    }
}

八、结果

这里写图片描述

  • 1
    点赞
  • 0
    评论
  • 1
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

打赏
文章很值,打赏犒劳作者一下
相关推荐
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页

打赏

Wang-Junchao

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值