在前面的初级和中级教程中,我们了解了NLTK库中的基本和进阶功能,如词干提取、词形还原、n-gram模型和词云的绘制等。在本篇高级教程中,我们将深入探索NLTK的更多高级功能,包括句法解析、命名实体识别、情感分析以及文本分类。
一、句法解析
句法解析是自然语言处理中的一项重要任务,它的目的是识别出文本中词语之间的句法关系。在NLTK中,我们可以使用StanfordParser进行句法解析:
python
复制代码
from nltk.parse.stanford import StanfordParser
scp = StanfordParser(path_to_jar="path/to/stanford-parser.jar",
path_to_models_jar="path/to/stanford-parser-3.9.2-models.jar")
sentence = "The cat is chasing the mouse"
result = list(scp.raw_parse(sentence))
for tree in result:
print(tree)
二、命名实体识别
命名实体识别(NER)是识别出文本中特定类别(如人名、地名、组织名等)实体的过程。在NLTK中,我们可以使用ne_chunk函数进行命名实体识别:
python
复制代码
from nltk import word_tokenize, pos_tag, ne_chunk
sentence = "Mark and John are working at Google."
print(ne_chunk(pos_tag(word_tokenize(sentence))))
三、情感分析
情感分析(Sentiment Analysis)是利用自然语言处理、文本分析和计算机语言学等技术来识别和提取文本中的主观信息。在NLTK中,我们可以使用VADER情感分析器进行情感分析:
python
复制代码
from nltk.sentiment.vader import SentimentIntensityAnalyzer
sid = SentimentIntensityAnalyzer()
text = "I love this car."
ss = sid.polarity_scores(text)
for k in ss:
print('{0}: {1}, '.format(k, ss[k]), end='')
四、文本分类
文本分类是自然语言处理的另一个重要任务,NLTK提供了多种机器学习算法供我们进行文本分类,如朴素贝叶斯分类器:
python
复制代码
from nltk.corpus import names
from nltk.classify import apply_features
import random
def gender_features(word):
return {'last_letter': word[-1]}
names = ([(name, 'male') for name in names.words('male.txt')] +
[(name, 'female') for name in names.words('female.txt')])
random.shuffle(names)
featuresets = [(gender_features(n), g) for (n, g) in names]
train_set = apply_features(gender_features, names[500:])
test_set = apply_features(gender_features, names[:500])
classifier = nltk.NaiveBayesClassifier.train(train_set)
print(classifier.classify(gender_features('Neo')))
以上,我们介绍了NLTK库中的一些高级功能,包括句法解析、命名实体识别、情感分析以及文本分类等。通过深入学习和实践这些功能,我们可以进一步提升我们在自然语言处理领域的能力。
这里给大家分享一份Python全套学习资料,包括学习路线、软件、源码、视频、面试题等等,都是我自己学习时整理的,希望可以对正在学习或者想要学习Python的朋友有帮助!
CSDN大礼包:全网最全《全套Python学习资料》免费分享🎁
😝有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓

1️⃣零基础入门
① 学习路线
对于从来没有接触过Python的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

② 路线对应学习视频
还有很多适合0基础入门的学习视频,有了这些视频,轻轻松松上手Python~
③练习题
每节视频课后,都有对应的练习题哦,可以检验学习成果哈哈!

因篇幅有限,仅展示部分资料
2️⃣国内外Python书籍、文档
① 文档和书籍资料

3️⃣Python工具包+项目源码合集
①Python工具包
学习Python常用的开发软件都在这里了!每个都有详细的安装教程,保证你可以安装成功哦!

②Python实战案例
光学理论是没用的,要学会跟着一起敲代码,动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。100+实战案例源码等你来拿!

③Python小游戏源码
如果觉得上面的实战案例有点枯燥,可以试试自己用Python编写小游戏,让你的学习过程中增添一点趣味!

4️⃣Python面试题
我们学会了Python之后,有了技能就可以出去找工作啦!下面这些面试题是都来自阿里、腾讯、字节等一线互联网大厂,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。


5️⃣Python兼职渠道
而且学会Python以后,还可以在各大兼职平台接单赚钱,各种兼职渠道+兼职注意事项+如何和客户沟通,我都整理成文档了。


上述所有资料 ⚡️ ,朋友们如果有需要 📦《全套Python学习资料》的,可以扫描下方二维码免费领取 🆓
😝有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓


被折叠的 条评论
为什么被折叠?



