【LLM大模型】介绍 RAG(检索增强生成)

什么是 RAG?

RAG(Retrieval-Augmented Generation)是一种将检索和生成结合在一起的模型架构,特别适用于回答开放域问答、生成相关文本以及需要丰富背景信息的任务。它结合了检索系统和生成模型的优势,通过从大型数据库中检索相关信息并使用生成模型对其进行处理,生成更准确和上下文相关的答案或内容。

RAG 的基本原理

RAG 模型的工作流程可以分为以下几个步骤:

  1. 检索:从一个大型知识库或文档集合中检索与输入查询相关的文档或段落。通常使用 BM25 或密集检索模型如 DPR(Dense Passage Retrieval)来实现这一点。
  2. 编码:对检索到的文档和输入查询进行编码,生成它们的表示。
  3. 融合:将输入查询的表示与检索到的文档表示结合起来,作为生成模型的输入。
  4. 生成:使用生成模型(如 T5 或 BART)生成回答或相关内容。

这种方法通过结合检索到的丰富信息和生成模型的强大生成能力,能够在复杂和开放域任务中表现出色。

RAG 的应用场景

RAG 模型在多个领域有广泛的应用,包括但不限于:

  • 开放域问答:在回答开放性问题时,RAG 可以从大量文档中检索相关信息,生成更准确和详尽的回答。
  • 对话系统:在聊天机器人或对话系统中使用 RAG,可以使回答更具上下文相关性和信息量。
  • 文档摘要:从多个文档中检索相关段落,生成一个综合性的摘要。
  • 信息检索增强:在需要综合多个信息源的任务中,RAG 可以提供更全面的回答或内容。
RAG 的优势
  1. 上下文丰富:通过检索相关信息,RAG 可以生成更符合上下文的回答或内容。
  2. 灵活性强:RAG 可以处理多种类型的输入和任务,包括问答、生成文本、文档摘要等。
  3. 性能优越:在开放域问答和其他需要丰富背景信息的任务中,RAG 的性能优于单纯的生成模型。
RAG 的实现步骤
步骤一:数据准备

首先,需要准备一个大型的文档集合或知识库。这可以是维基百科、新闻文章、科学文献等。还需要准备一组训练数据,包含查询和对应的答案。

步骤二:检索模型训练

使用 BM25 或训练一个密集检索模型(如 DPR),通过双塔结构编码器将查询和文档表示为向量。通过对比学习,使查询和相关文档的向量接近,而与无关文档的向量远离。

代码语言:python

代码运行次数:0

**Cloud Studio代码运行

# 训练 DPR 模型的简化示例
from transformers import DPRContextEncoder, DPRQuestionEncoder, DPRReader

# 加载预训练模型
context_encoder = DPRContextEncoder.from_pretrained('facebook/dpr-ctx_encoder-single-nq-base')
question_encoder = DPRQuestionEncoder.from_pretrained('facebook/dpr-question_encoder-single-nq-base')

# 示例数据
questions = ["What is RAG?", "How does RAG work?"]
contexts = ["RAG is Retrieval-Augmented Generation", "RAG combines retrieval and generation"]

# 编码
question_encodings = question_encoder(questions)
context_encodings = context_encoder(contexts)
步骤三:生成模型训练

选择一个生成模型(如 T5 或 BART),将输入查询和检索到的文档表示结合起来,作为生成模型的输入。训练过程中,模型学习如何根据输入生成准确的回答或内容。

代码语言:python

代码运行次数:0

**Cloud Studio代码运行

from transformers import BartForConditionalGeneration, BartTokenizer

# 加载预训练模型
model = BartForConditionalGeneration.from_pretrained('facebook/bart-large')
tokenizer = BartTokenizer.from_pretrained('facebook/bart-large')

# 示例数据
input_text = "RAG combines retrieval and generation. How does it work?"
inputs = tokenizer(input_text, return_tensors="pt")
output = model.generate(**inputs)

# 解码输出
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
print(generated_text)
步骤四:模型融合

将检索模型和生成模型结合起来,构建一个完整的 RAG 模型。通过优化和微调,使其在特定任务上达到最佳性能。

代码语言:python

代码运行次数:0

**Cloud Studio代码运行

# 简化的 RAG 模型示例
class RAGModel:
    def __init__(self, retriever, generator):
        self.retriever = retriever
        self.generator = generator
    
    def generate(self, query):
        retrieved_docs = self.retriever.retrieve(query)
        combined_input = query + " ".join(retrieved_docs)
        generated_output = self.generator.generate(combined_input)
        return generated_output

# 使用示例
rag_model = RAGModel(retriever=context_encoder, generator=model)
response = rag_model.generate("What is RAG?")
print(response)
总结

RAG(检索增强生成)通过将检索和生成相结合,能够在需要丰富背景信息的任务中表现出色。它不仅在开放域问答和对话系统中具有很大的应用潜力,还可以用于文档摘要和信息检索增强等任务。通过适当的数据准备、检索模型训练、生成模型训练和模型融合,可以构建出一个强大的 RAG 系统。

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

  • 13
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值