2022吴恩达机器学习笔记(第一课)

本文介绍了机器学习的基础概念,包括监督学习中的分类和回归,无监督学习中的聚类,以及线性回归的模型、代价函数、梯度下降法。此外,还讨论了线性回归的正则化和逻辑回归在二元分类问题中的应用,以及过拟合和正则化作为解决方案的重要性。
摘要由CSDN通过智能技术生成

初识机器学习:

1、Supervised learning

理解:学习输入到输出映射的算法,并依据该算法进行预测

        选择模型->让机器学习含输入、输出相映射的训练集->预测测试集

分类:回归/分类问题

          在回归问题中,我们试图在连续输出中预测结果,这意味着我们试图将输入变量映射到某个连续函数。在分类问题中,我们试图将输入变量映射到离散的类别中。

           回归预测的输出有无限个,分类输出则为有限个

2、Unsupervised learning

仅给定一组数据,从数据集中寻找规律。即没有训练集(x到y的映射),只有x

举例:聚类算法,将数据集分为不同的簇

3、Reinforcement learning

单变量线性回归:

1、线性回归模型

概念:x,y,(x,y),(x(i),y(i)),y hat

Univariate linear regression 单变量线性回归

2、代价函数

        评价模型拟合的好坏,并通过最小化代价函数来确定w,b的值。常用于回归问题

        如:平方误差代价函数函数

        m代表训练样本数

        可视化代价函数:

                下图为两参,三维的代价函数(重点理解!)

3、梯度下降

本想用代价函数来评价模型拟合的好坏,这是一个正向过程。但现在我们想用最小化代价函数来确定w,b的值,从而更新模型,这是一个反向过程。而通过梯度下降可以逐步确定w,b的值

过程(重点理解!):

设定学习率(决定下降的快慢)后,同时更新w,b,直到达到局部最低点

当导数为正/负时,参数趋向于小/大

 

 

 

4、线性回归的梯度函数

线性回归模型的代价函数是凸函数,只有一个全局最优解

推理过程(掌握!)

多元线性回归:

1、向量化

        概念:xj,n,x(i)-->>第i个特征(有一列数据),特征数,第i个样本

        向量化:

 

w=np.array([1,2,3.4])

b=4

x=np.array([10,2,2.1])

f=np.dot(w,x)+b

上面代码可以并行处理(重点理解!)

2、多元线性回归的梯度下降

        参数更新:

 

        正规方程是线性回归问题中区别于梯度下降的一种求解代价函数J(θ)最小值的方法,它不需要迭代更新参数,且只适用于线性回归问题

3、特征缩放

多特征问题中用来标准化数据特征的范围,保证这些特征的取值范围相近,可以使梯度下降更快

当一个特征的取值范围很大时,一个好的模型更有可能学会选择一个相对较小的参数值;同样,当特征值的取值范围很小时,它对应的参数会比较大。

 

特征缩放方法:

scaling(调节比例)

 

normalization(归一化)

  1. Z-score normalization/standarization常在SVM,逻辑回归和神经网络等算法中标准化数据,其公式如下

缩放后,特征就变为具有标准正态分布,其中μ均值,σ是平均值的标准差

具体理解如下

 

标准化、规范化的区别参看

百度安全验证

4、判断梯度下降是否收敛

学习曲线图:参数的每更新一次,代价函数都会下降。若代价函数增加学习率选择不当或代码中存在错误(如何选择学习率)

 

自动收敛测试:规定一个数值,只要代价函数值低于该数,则视为收敛。但通常使用学习曲线图(思考为什么)

 

5、特征工程

根据原始特征来设计新的特征,使得特征更符合问题预测。特征工程通常包括数据预处理、特征选择、降维等环节。

具体参看https://zhuanlan.zhihu.com/p/36503570

Polynomial regression

可以拟合非线性函数,例如下图用x3 ,x1/2拟合(特征的取值范围产生相应变化)

逻辑回归:

1、二元分类

negative class (负类 0 false),positive class (正类 1 true)

对于是否是恶性肿瘤的二分类问题中,是恶性肿瘤则为正类,不是恶性肿瘤则为负类

线性回归模型不适用于分类问题--拟合的直线的决策边界极不稳定

2、逻辑回归模型

输入特征并输出一个介于 0 和 1 之间的数字,该数字指预测类别为 1 的概率

 

3、决策边界

设定逻辑回归模型的阈值,高于该值时预测 y-hat = 1,低于该值时预测 y-hat = 0

结合Sigmoid函数,w · x + b的正负决定了预测的结果。当w · x + b=0时,预测为1,0的概率相等,此时我们称w · x + b=0的线为决策边界

 

4、代价函数

平方误差代价函数不适用于逻辑回归模型,因为它的代价函数不是凸函数

 

逻辑回归代价函数(重点理解原理!):

单个训练样本的损失如下(Logistic loss function)

两项合并

 

5、梯度下降

6、过拟合

概念:过/欠拟合 高偏/方差

  偏差用来衡量一个模型的拟合能力 方差描述的是 一个模型在不同训练集上的差异,表示模型的泛化能力

解决:

        收集更多数据

        减少特征

        正则化

                保留所有特征,减少某些不重要特征的参数,防止特征产生过大的影响。由于不知道哪个参数重要,所以通常正则化所有的特征。且大多数只对w 使用正则化,而不正则化 b

 

                最小化新的代价函数,使预测和真实差值尽可能的小,用来拟合数据。也可以使wj尽可能的小,防止过拟合(重点理解!)

        

 

7、正则化

线性回归的正则化

        在每次迭代中,将 wj 乘以一个略小于 1 的数,使其具有缩小 wj 的效果

        理解式子为什么能够正则化wj,而无法正则化b

 

 

逻辑回归的正则化

同上

上述内容仅作框架整理

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值