【论文学习】基于无监督迁移学习的高光谱目标检测

Unsupervised transfer learning for target detection from hyperspectral images

基于无监督迁移学习的高光谱目标检测

论文来源:https://doi.org/10.1016/j.neucom.2012.08.056

摘要

    目标检测一直是高光谱图像处理的热门领域之一。传统的目标检测方法取决于观察中的所有像素的相对固定的特征。例如,RX对所有像素采用相同的距离测量。但是,最好的分离结果通常来自特定的目标和背景。理论上讲,它们是最纯粹的目标和背景像素,或子空间模型中的建设性端元。因此,使用那些最具代表性的像素特征来训练一个集中的子空间有望增强目标和背景之间的可分性。同时,将这些训练数据中的判别信息应用于不属于同一特征空间且数据分布不同的大量测试数据是一个挑战。这里采用了视频中交互式标注技术的迁移学习思想。基于迁移学习框架,考虑了几点,并将所提出的方法命名为基于无监督迁移学习的目标检测(UTLD)算法。大量的实验表明,其性能可与先进的目标检测方法相媲美。

      UTLD算法:

  1. 从稳健的异常值检测生成极端目标和背景像素,为迁移学习中的目标样本和背景样本提供输入;
  2. 像素是根据分割方法中的根点计算的,目的是在缩小维度之后保留背景的最大分布特征;
  3. 迁移学习过程中施加了稀疏约束,有了这个约束,可以构建一个更简单,更集中的子空间,并且具有明确的物理意义。

1.Introduction

    目标检测的首要关键是目标的特征。在高光谱图像的目标检测中,最广泛使用的是光谱特征。常用的模型有线性混合模型与子空间模型,这两种模型均呈现出较好的性能,然而这两种物理模型需要先验信息。还有一种是取决于统计模型,对目标没有预先的知识,它被称为无监督的(包括异常检测)。

    这些常规方法中需要手动选择目标像素和背景像素,然后用于构建基于子空间的检测器,其中目标像素和背景像素被假定为可分离的。 然而,训练像素的数量通常是有限的,并且相应构造的子空间可能过度拟合训练像素,从而不能精确地检测剩余目标像素。我们能否找到一些方法来保存判别信息并避免过拟合? 迁移学习已经显示出其在有限的样本中学习子空间的良好性能,因此它被引入到本文中高光谱图像的目标检测中。 重点研究利用训练样本的判别信息和从训练目标/背景样本和那些未标记样本中学习一个合适的子空间,这篇文章为高光谱目标检测做出了几点贡献:

  1. 使用多元异常值分析来选择目标像素与背景像素并将其作为positive training 和 negative training的训练样本(现有的目标检测方法主要依赖于手动选择像素作为训练样本)。
  2. 采用分割方法来获得最具代表性和信息量的未标记样本。 这样可以充分考虑高光谱图像中丰富的连续空间特征(现有方法通常随机选择未标记的样本,或者图像中的所有样本用于学习检测器,如CEM)。
  3. 通过训练标注样本(包括positive样本和negative样本)和未标记样本,制定了基于迁移学习的子空间构建方法。 如果使用成对的判别分析来增强目标背景像素的可分离性,高光谱图像的现有目标检测方法主要依靠标记样本构造子空间。

2.多元异常检测的无监督目标识别

    迁移学习需要用到positive样本和negative样本。positive样本指目标像素,nega

  • 3
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值