Project5总结 #基于transformers框架的三元组抽取背景说明:信息抽取(Information Extraction, IE)是从自然语言文本中抽取实体Subject、属性Object、关系Predicate/Relation及事件等事实类信息的文本处理技术,是信息检索、智能问答、智能对话等人工智能应用的重要基础,一直受到业界的广泛关注。信息抽取任务涉及命名实体识别、指代消解、关系分类等复杂技术Transformers是近两年【bert介绍】,尤其是Bert的出现,另自然语言处理研究方向几乎都向预训练方向倾
线性代数 第一天学习:第一章行列式内容列表1.1 二阶与三阶行列式1.2 全排列和对换(计算行列式的值时会使用到,全排序针对的是自然数)1.3 n阶行列式的定义练习题:1、二阶行列式∣3456∣=(−1)a11,a22∗(3∗2)+(−1)a12,a21∗(4∗4)=1∗6−4∗4=−10\left| \begin{matrix} 3 & 4\\5 & 6\...
机器学习【算法岗面试总结2】----树模型 2.1 决策树的四种基本形态目前主要流行的决策树包含以下四种情况树名称 特征选择方法 树的分支树 涉及到的计算 节点分类 ID3 信息增益 选择出的特征,每个值做一个分支 只要计算每个特征的信息增益 依次选择信息增益值最大的特征进行节点分裂 C4.5 信息增益比 选择出的特征,每个值做一个分支 只要计算每个特征的信息...
算法Coding练习--leetcode【Python 第二天】 (字符的加减乘除) 2.1 LeetCode[2] Add Two Numbers:You are given two non-empty linked lists representing two non-negative integers. The digits are stored in reverse order and each of their nodes contain a single digi...
算法Coding练习--leetcode (Python 数学运算) 1.1 LeetCode[1]Two Sum:Given an array of integers, returnindicesof the two numbers such that they add up to a specific target. You may assume that each input would haveexactlyone solution, and ...
机器学习【算法岗面试总结1】----逻辑回归 1 逻辑回归和线性回归的区别线性回归方程为 z=f(x)=θ∗xz = f{(x)} = \theta*xz=f(x)=θ∗x,其中x为输入特征,θ\thetaθ为模型参数;损失函数记为L(θ)=∣∣y−f(x)∣∣22L(\theta)=||y-f(x)||_2^2L(θ)=∣∣y−f(x)∣∣22,通过梯度下降法求出最优的θ\thetaθ值。逻辑回归(此处只针对二分类问题)是处理分类...