关于fbprophet环境配置的流程(本人亲测可行) 通过网上多位实践者的反馈,fbprophet的环境配置确实存在诸多的坑,本人经过多次尝试走出了一条亲测可行的道路,这里介绍给大家。fbprophet环境配置可以分为yixa
使用Isolation forest算法处理大规模数据方法介绍 在做数据挖掘时,我们常常因为自身电脑的配置不高,所以在运行代码时出现,cpu利用率太高或者内存使用率直接爆表的情况。在这里我介绍一种处理方法,这种方法所传递的思想,也可以用到类似的场景中去。本文是基于Isolation forest处理异常数据所采用的方法,其中原始数据非常庞大,数据量超过千万条,虽然Isolation forest这个算法实用性非常大,但是当数据量达到一定程度时,对于电脑硬件也是...
关于使用django2.2.5出现“ImproperlyConfigured: mysqlclient 1.3.13 or newer is required; you have 0.9.3”的问题 随着django的更新,相对一些历经考验的老版本,本人出于尝鲜的考虑,就是使用了最新的django2.2.5版本,在配置数据库时,出现了“django.core.exceptions.ImproperlyConfigured: mysqlclient 1.3.13 or newer is required; you have 0.9.3.”的问题,.经查询是django2.2.5版本与py...
关于出现错误“The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any”的解决方法 在pandas中我们有时会根据多条件进行数据筛选,比如:运行结果会出现错误:ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().这时我们的解决方法是:...
关于使用hanlp进行中文分词时,出现错误 TypeError: must be str, not java.util.ArrayList 的解决方法 hanlp是基于java开发的,主要是用于生产环境下,如果使用python来调用hanlp的话,可以通过pyhanlp来使用它。但是我们直接使用from pyhanlp import *result=Hanlp.segment(data)print(result)那么就出现这样的结果:这是因为通过Hanl.segment(data) ,我们所获得的结果是java的ArrayLi...
关于热力图的绘制问题 关于地理热力图的绘制,我觉得很炫酷。在这里我使用了两种方法:结合python和百度地图api的方法;使用python的folium的方法。(1)结合python和百度地图api的方法1. 进入网站:http://lbsyun.baidu.com/,选择控制台。2.选择创建应用3. 获取密钥4. 再转到网址:http://lbsyun.baidu.com/jsd...
关于with open() as f 的一点小知识 with open('file name','r') as f 如果读取不存在的文件,就会显示出一个IOError的错误,并且给出错误码和详细的信息告诉你文件不存在。这时我们可以直接使用with open('file name' ,'w') as f ,它会自动先创建一个文件,然后写入内容。...
关于python中几种数据可视化图形 python中我们一般用的最多的是matplotlib图形库,本人在写文章,做报告时,深感matplotlib图形比较单一化,这里介绍几种关于python的图形库(1)seaborn 是基于matplotlib的高级版,主要针对的数据挖掘和机器学习的变量特征选取,可以用非常短小的代码就可以画出多维变量的可视化图形,seaborn的官方网站:http://seaborn.pydata.org/,...
关于python3.6中 OSError: Initializing from file failed的问题 这里只需要在pandas的读取中加入:engine='python'即可即pd.read_csv(input_file,engine='python')就可以解决这个问题了。
关于问题TypeError: 'range' object doesn't support item deletion 在python3以上的版本中,range()返回的对象不是数组类型,在这里我们可以使用 dataIndex=list(range(m)) 来替换 dataIndex=range(m),即可解决问题
关于问题TypeError: only length-1 arrays can be converted to Python scalars 的解决方法 注意:关于math.exp()不能对矩阵直接进行操作,这里要使用np.exp(),即可解决问题。
朴素贝叶斯 1. 朴素贝叶斯介绍朴素贝叶斯法是基于贝叶斯定理()与特征条件独立假设的分类方法。对于给定的训练数据集,首先基于特征条件独立假设学习输入/输出的联合概率分布;然后基于此模型,对给定的输入x, 利用贝叶斯定理求出后验概率最大的输出y。2. 朴素贝叶斯特点优点:在数据较少的情况下仍然有效,可以处理多类别问题缺点:对于输入数据的准备方式较为敏感。使用数据类型:标称型数据3. 朴素...
anaconda和tensorflow的安装 现在关于tensorflow和anaconda基本都是在一起安装使用的,下面介绍一些安装流程:(1)首先点击链接:https://www.anaconda.com/download/ ,进入如图所示页面: 点击下面的:anaconda5.2的python3.6版本,我的电脑是64位系统,我选择第一个文件进行下载 ...
(1)单层感知机 1. 概念介绍:假设输入空间(特征空间)是 ,输入空间是Y={+1,-1}. 输入 表示实例的特征向量,对于应于输入空间(特征空间)的点;输出表示实例的类别.由输入空间到输出空间的如下函数: 称为感知机。其中,w和b为感知机模型参数,叫做权...
决策树 决策树模型与学习1. 决策树模型决策树定义:分类决策树是一种描述对实例进行分类的树型结构。决策树由结点和有向边组成。结点有两种类型:内部结点和叶结点。内部结点表示一个特征或属性,叶子结点表示一个类。用决策树分类,从根结点开始,对实例的某一特征进行测试,根据测试结果,将实例分配到其他子结点;这时,每一个子结点对应着该特征的一个取值,如此递归地对实例进行分配,直至达到叶结点。最后将实例分到...
k-近邻算法 1. 算法概述:是一种基本分类和回归的算法。k近邻法的输入为实例的特征向量,对应于特征空间的点;输出为实例的类别,可以取多类。k近邻法假设给定一个训练数据集,其中的实例类别已定。分类时,对新的实例,根据其k个最近邻的训练实例的类别,通过多数表决等方式进行预测。因此,k近邻不具有显示的学习过程。k近邻实际上是利用训练数据集对特征向量空间进行划分,并作为其分类的“模型”。k值的选择、距离度量及分类决策...
关于python连接mysql相关知识(2) 之前导入数据库的方法是SQL语句和集合python正常编程的方法,整个流程相对较复杂,在这里我介绍一种更加简便的方法:即结合pandas和sqlalchemy来将数据导入数据库,代码如下:#!/usr/bin/env python3#coding=utf-8import pymysqlimport pandas as pdfrom sqlalchemy import create...
关于运用python读取PDF 文件的知识 pdf读取总刚要: (1) (2) (3) 代码如下:#!/usr/bin/env python3#coding=utf-8from pdfminer.pdfparser import PDFParser,PDFDocumentfrom pdfminer.pdfinterp import PDFResourceManager,PDFPa...
关于python连接mysql相关知识 第一步:首先安装mysql安装库,我用的是这种封装文件界面如图所式:启动它,显示mysq启动就可以了第二步:安装navicat构建可视化的mysql环境然后点击新建连接构建 效果如图所示:第三步:使用python语言来将数据导入数据库(代码如下所示)#!/usr/bin/env python3#coding=utf-8import pym...
在linux 安装wordcloud出现的问题 error: command 'x86_64-linux-gnu-gcc' failed with exit status 1解决方法: sudo apt-get install build-essential libssl-dev libffi-dev python3-dev这个是针对python 3X以上的版本