题目链接:https://jzoj.net/senior/#main/show/5410
60pts做法:
斜着前缀和,每个询问O(k)解决。
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
using namespace std;
int n,m,q,a[2010][2010];
ll s[4010][4010],r[4010][4010];
int read()
{
int x=0;
char ch=getchar();
while(ch<'0'||ch>'9') ch=getchar();
while(ch>='0'&&ch<='9') {x=x*10+ch-'0';ch=getchar();}
return x;
}
int main()
{
n=read();m=read();
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
a[i][j]=read();
int sz=max(n,m);
memset(s,0,sizeof(s));
memset(r,0,sizeof(r));
for(int j=1;j<=m;j++)
for(int i=1;i<=n;i++)
s[i+j][j]=s[i+j][j-1]+a[i][j];
for(int j=1;j<=m;j++)
for(int i=1;i<=n;i++)
r[j-i+sz][j]=r[j-i+sz][j-1]+a[i][j];
q=read();
for(int i=1;i<=q;i++)
{
int x=read(),y=read(),k=read();
ll ans=a[x][y]*k;
for(int j=1;j<=k-1;j++)
{
ll cal=0;
cal+=s[x+y-j][y]-s[x+y-j][y-j-1];
cal+=s[x+y+j][y+j]-s[x+y+j][y-1];
cal+=r[y-x+sz-j][y]-r[y-x+sz-j][y-j-1];
cal+=r[y-x+sz+j][y+j]-r[y-x+sz+j][y-1];
cal-=a[x-j][y]+a[x+j][y]+a[x][y-j]+a[x][y+j];
ans+=cal*(k-j);
}
printf("%lld\n",ans);
}
return 0;
}
100pts:差分乱搞。
预处理这样几个前缀和(A[x][y]的(x,y)加粗表示,表格中的数是原数要乘上的权值,最后一起加起来)。
正上前缀和(zu):
…………..
…3 2 1 0
…3 2 1 0
…3 2 1 0
…0 0 0 0
正下前缀和(zd):
…0 0 0 0
…3 2 1 0
…3 2 1 0
…3 2 1 0
……….
左上前缀和(ul):
………..
…4 3 2 1 0
…3 2 1 0
…2 1 0
…0 0 0
右上前缀和(ur):
………..
…2 1 0
…3 2 1 0
…4 3 2 1 0
…0 0 0
左下前缀和(dl):
…0 0 0
4 3 2 1 0
3 2 1 0
2 1 0
………..
右下前缀和(dr):
…0 0 0
2 1 0
3 2 1 0
4 3 2 1 0
………..
对于每一个询问,分上下两部分计算。
上半部分(包括中间):dl[x-k][y]-dl[x+1][y-k-1]+dr[x-k][y]-dr[x+1][y+k+1]-(zd[x-k][y]-zd[x+1][y])*2。
下半部分(不包括中间):ur[x+k][y]-ur[x][y-k]+ul[x+k][y]-ul[x][y+k]-(zu[x+k][y]-zu[x][y])*2)。
都是O(1)的
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
using namespace std;
int n,m,q;
ll ul[2010][2010],ur[2010][2010],dl[2010][2010],dr[2010][2010],a[2010][2010],zd[2010][2010],zu[2010][2010];
int read()
{
int x=0;
char ch=getchar();
while(ch<'0'||ch>'9') ch=getchar();
while(ch>='0'&&ch<='9') {x=x*10+ch-'0';ch=getchar();}
return x;
}
int main()
{
n=read();m=read();
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{a[i][j]=read();a[i][j]+=a[i][j-1];}
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
a[i][j]+=a[i][j-1];
for(int i=1;i<=n+1;i++)
for(int j=1;j<=m+1;j++)
zu[i][j]=zu[i-1][j]+a[i][j-1];
for(int i=n;i>=0;i--)
for(int j=1;j<=m+1;j++)
zd[i][j]=zd[i+1][j]+a[i][j-1];
for(int i=1;i<=n+1;i++)
for(int j=1;j<=m+1;j++)
ul[i][j]=ul[i-1][j+1]+zu[i][j]-zu[i-1][j];
for(int i=n;i>=0;i--)
for(int j=1;j<=m+1;j++)
dl[i][j]=dl[i+1][j-1]+zd[i][j]-zd[i+1][j];
for(int i=1;i<=n+1;i++)
for(int j=1;j<=m+1;j++)
ur[i][j]=ur[i-1][j-1]+zu[i][j]-zu[i-1][j];
for(int i=n;i>=0;i--)
for(int j=1;j<=m+1;j++)
dr[i][j]=dr[i+1][j+1]+zd[i][j]-zd[i+1][j];
q=read();
for(int i=1;i<=q;i++)
{
int x=read(),y=read(),k=read();
printf("%lld \n",dl[x-k][y]-dl[x+1][y-k-1]+dr[x-k][y]-dr[x+1][y+k+1]-(zd[x-k][y]-zd[x+1][y])*2
+ur[x+k][y]-ur[x][y-k]+ul[x+k][y]-ul[x][y+k]-(zu[x+k][y]-zu[x][y])*2);
}
return 0;
}
本文介绍了一种使用斜着前缀和的方法来优化二维数组中特定范围的查询效率,并提出了一种更为高效的差分方法实现O(1)时间复杂度的查询。
1041

被折叠的 条评论
为什么被折叠?



