代码随想录算法训练营day39 | LeetCode 62. 不同路径 63. 不同路径 II

两篇文章讲述了在LeetCode平台上使用二维动态规划解决不同路径问题的方法,一个是基础版本,没有障碍物;另一个考虑了障碍物,遇到障碍dp[i][j]置零。关键在于状态转移和初始化处理,特别提及了处理首行首列特殊情况时的障碍判断。
摘要由CSDN通过智能技术生成

2. 不同路径(题目链接:力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台

思路:整体思路是一样的,找到状态转移公式和初始化处理。不过这题开始dp数组变成了二维,需要着重考虑初始话特殊条件判断。

int uniquePaths(int m, int n){
    vector<vector<int>> dp(m, vector<int>(n, 0));
    for(int i=0; i<n; i++) dp[0][i]=1;
    for(int i=0; i<m; i++) dp[i][0]=1;
    for(int i=1; i<m; i++){
        for(int j=1; j<n; j++){
            dp[i][j] = dp[i][j-1] + dp[i-1][j];
        }
    }
    return dp[m-1][n-1];
}

63. 不同路径 II(题目链接:力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台

思路:遇到障碍dp[i][j]就赋值0,其他都是类似。比较容易漏掉的一点是,初始化的时候,也就是给dp数组第一行和第一列全部赋值1的时候要判断途中是否出现障碍物,若出现,后面的位置就都到不了,需要全部赋值为0.

int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid){
    int m = obstacleGrid.size();
    int n = obstacleGrid[0].size();
    vector<vector<int>> dp(m, vector<int>(n, 0));
    for(int i=0; i<n && obstacleGrid[0][i]==0; i++) dp[0][i]=1;
    for(int i=0; i<m && obstacleGrid[i][0]==0; i++) dp[i][0]=1;
    for(int i=1; i<m; i++){
        for(int j=1; j<n; j++){
            if(obstacleGrid[i][j] == 1) dp[i][j] = 0;
            else dp[i][j] = dp[i][j-1] + dp[i-1][j];
        }
    }
    return dp[m-1][n-1];
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_porter

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值