希尔排序,也称递减增量排序(缩小增量排序)算法,是插入排序的一种更高效的改进版本。但希尔排序是非稳定排序算法。
希尔排序是基于插入排序的以下两点性质而提出改进方法的:
- 插入排序在对几乎已经排好序的数据操作时,效率高,即可以达到线性排序的效率;
- 但插入排序一般来说是低效的,因为插入排序每次只能将数据移动一位;
希尔排序的基本思想是:先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,待整个序列中的记录"基本有序"时,再对全体记录进行依次直接插入排序。
1. 算法步骤
选择一个增量序列 t1,t2,……,tk,其中 ti > tj, tk = 1;
按增量序列个数 k,对序列进行 k 趟排序;
每趟排序,根据对应的增量 ti,将待排序列分割成若干长度为 m 的子序列,分别对各子表进行直接插入排序。仅增量因子为 1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。
2. 动图演示
以上来自
代码及自己的理解
/**
* 希尔排序也叫 缩小增量排序
*/
public int[] sort(int[] sourceArray) throws Exception {
// 对 arr 进行拷贝,不改变参数内容
int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);
// 初始化分增量(这个初始化的方式必然导致gap最后一次缩小,为1)
int gap = 1;
while (gap < arr.length) {
gap = gap * 3 + 1;
}
// 当上一次增量缩小为0的时候
while (gap > 0) {
for (int i = gap; i < arr.length; i++) {
// 当前 i 指向的数字(初始是以gap(gap会一直缩小直至1)为起始点 ,然后 i 逐渐遍历至数组的最后一位)
int tmp = arr[i];
// gap = gap / 3; 直至gap = 0; 跳出while循环;
// i = gap, j = i - gap = 0;
// i = gap + 1, j = gap + 1 - gap = 1;
// i = gap + 2, j = gap + 2 - gap = 2;
// ...
// i = length - 1 , j = length - 1;
int j = i - gap;
while (j >= 0 && arr[j] > tmp) {
// 这个while循环的作用是将 arr[i] 进行“挪位”,如果前面有几个连续的数字大于arr[i],
// 结果就是这几个数字往后挪一位,让temp放在最后一个位置上(连续大于temp的数字
// 中最后一个大于arr[i]的位置上,从后往前,举个例子 7 6 5 4 ,此时arr[i] = 4
// while 循环 下来,包括while循环外面的那一条语句 结果 4 7 6 5
arr[j + gap] = arr[j];
j -= gap;
}
arr[j + gap] = tmp;
}
// 缩小 一般是选除3向下取整
gap = (int) Math.floor(gap / 3);
}
return arr;
}