/*********************************************************************************
数据结构——并查集及应用
并查集是若干个不相交集合,能够实现较快的合并和判断元素所在集合的操作,应用很多。
一般采取树形结构来存储并查集,并利用一个rank数组来存储集合的深度下界,在查找操作时进行路径压缩使后续的查找操作加速。
这样优化实现的并查集,空间复杂度为O(N),建立一个集合的时间复杂度为O(1),
N次合并M查找的时间复杂度为O(M Alpha(N)),这里Alpha是Ackerman函数的某个反函数,
在很大的范围内(人类目前观测到的宇宙范围估算有10的80次方个原子,这小于前面所说的范围)
这个函数的值可以看成是不大于4的,所以并查集的操作可以看作是线性的。
**********************************************************************************/
int set[MAXN],rank[MAXN];

int FindSet(int x)

...{
if(set[x]!=x)
set[x]=FindSet(set[x]);
return set[x];
}

void MakeSet(int x)

...{
set[x]=x;
rank[x]=0;
}

void Link(int a,int b)

...{
if(rank[a]>rank[b])
set[b]=a;
else if(rank[a]<rank[b])
set[a]=b;
else

...{
set[a]=b;
rank[b]++;
}
}

void Union(int a,int b)

...{
Link(FindSet(a),FindSet(b));
}

这是通过并查集实现kruskal算法求图的最小生成树的例子:
以下内容为程序代码:
#include "stdio.h"
#include "string.h"
#define INFIN 30000
#define MAXN 10

int set[MAXN],rank[MAXN];

int FindSet(int x)

...{
if(set[x]!=x)
set[x]=FindSet(set[x]);
return set[x];
}

void MakeSet(int x)

...{
set[x]=x;
rank[x]=0;
}

void Link(int a,int b)

...{
if(rank[a]>rank[b])
set[b]=a;
else if(rank[a]<rank[b])
set[a]=b;
else

...{
set[a]=b;
rank[b]++;
}
}


void Union(int a,int b)

...{
Link(FindSet(a),FindSet(b));
}

int main()

...{
int n,k,i,j,map[MAXN][MAXN];
int t1,t2,t3,cost=0;
memset(map,0,sizeof(map));
scanf("%d %d",&n,&k);
while(k--)

...{
scanf("%d %d %d",&t1,&t2,&t3);
map[t1][t2]=map[t2][t1]=t3;
}
for(i=0;i<n;i++)
MakeSet(i);
for(k=1;k<n;k++)

...{
t3=INFIN;
for(i=0;i<n;i++)
for(j=0;j<n;j++)
if(map[i][j] && FindSet(i)!=FindSet(j))
if(map[i][j]<t3)

...{
t1=i;t2=j;t3=map[i][j];
}
cost+=t3;
Union(t1,t2);
}
printf("%d/n",cost);
return 0;
}