Math Reference Notes: 三角函数


1. 三角函数的定义与推导

1.1 直角三角形中的定义

在直角三角形中,设角 θ \theta θ 是一个锐角,直角三角形的斜边长为 c c c ,对边长为 a a a ,邻边长为 b b b 。则三角函数定义如下:

  1. 正弦函数(sine,sin): sin ⁡ ( θ ) = 对边 斜边 = a c \sin(\theta) = \frac{\text{对边}}{\text{斜边}} = \frac{a}{c} sin(θ)=斜边对边=ca

  2. 余弦函数(cosine,cos): cos ⁡ ( θ ) = 邻边 斜边 = b c \cos(\theta) = \frac{\text{邻边}}{\text{斜边}} = \frac{b}{c} cos(θ)=斜边邻边=cb

  3. 正切函数(tangent,tan): tan ⁡ ( θ ) = 对边 邻边 = a b \tan(\theta) = \frac{\text{对边}}{\text{邻边}} = \frac{a}{b} tan(θ)=邻边对边=ba

  4. 余割函数(cosecant,csc): csc ⁡ ( θ ) = 斜边 对边 = c a = 1 sin ⁡ ( θ ) \csc(\theta) = \frac{\text{斜边}}{\text{对边}} = \frac{c}{a} = \frac{1}{\sin(\theta)} csc(θ)=对边斜边=ac=sin(θ)1

  5. 正割函数(secant,sec): sec ⁡ ( θ ) = 斜边 邻边 = c b = 1 cos ⁡ ( θ ) \sec(\theta) = \frac{\text{斜边}}{\text{邻边}} = \frac{c}{b} = \frac{1}{\cos(\theta)} sec(θ)=邻边斜边=bc=cos(θ)1

  6. 余切函数(cotangent,cot): cot ⁡ ( θ ) = 邻边 对边 = b a = 1 tan ⁡ ( θ ) \cot(\theta) = \frac{\text{邻边}}{\text{对边}} = \frac{b}{a} = \frac{1}{\tan(\theta)} cot(θ)=对边邻边=ab=tan(θ)1

1.2 单位圆中的定义与推导

在单位圆中,设单位圆的半径为1,圆心在坐标原点(0, 0),角 θ \theta θ 的顶点在原点,始边沿x轴正方向,终边与单位圆交于点 P ( x , y ) P(x, y) P(x,y) 。则:

  1. 正弦函数: sin ⁡ ( θ ) \sin(\theta) sin(θ) 表示角 θ \theta θ 的终边与y轴的交点的y坐标,因此:
    sin ⁡ ( θ ) = y \sin(\theta) = y sin(θ)=y

  2. 余弦函数: cos ⁡ ( θ ) \cos(\theta) cos(θ) 表示角 θ \theta θ 的终边与x轴的交点的x坐标,因此:
    cos ⁡ ( θ ) = x \cos(\theta) = x cos(θ)=x

  3. 正切函数: tan ⁡ ( θ ) \tan(\theta) tan(θ) 表示正弦函数与余弦函数的比值,因此:
    tan ⁡ ( θ ) = sin ⁡ ( θ ) cos ⁡ ( θ ) = y x \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} = \frac{y}{x} tan(θ)=cos(θ)sin(θ)=xy

  4. 余割函数:
    csc ⁡ ( θ ) = 1 sin ⁡ ( θ ) = 1 y \csc(\theta) = \frac{1}{\sin(\theta)} = \frac{1}{y} csc(θ)=sin(θ)1=y1

  5. 正割函数:
    sec ⁡ ( θ ) = 1 cos ⁡ ( θ ) = 1 x \sec(\theta) = \frac{1}{\cos(\theta)} = \frac{1}{x} sec(θ)=cos(θ)1=x1

  6. 余切函数:
    cot ⁡ ( θ ) = 1 tan ⁡ ( θ ) = x y \cot(\theta) = \frac{1}{\tan(\theta)} = \frac{x}{y} cot(θ)=tan(θ)1=yx

2.三角函数的图像分析

2.1正弦函数图像

正弦函数 y = sin ⁡ ( x ) y = \sin(x) y=sin(x) 的图像是一条波形曲线:

在这里插入图片描述

  • 周期:正弦函数的周期是 2 π 2\pi 2π ,即 sin ⁡ ( x + 2 π ) = sin ⁡ ( x ) \sin(x + 2\pi) = \sin(x) sin(x+2π)=sin(x)
  • 振幅:正弦函数的振幅是1,即最大值为1,最小值为-1。
  • 零点:正弦函数在 x = k π x = k\pi x= 处有零点,其中 k k k 为整数。

推导:利用单位圆,可以得到正弦函数在不同角度下的值。将这些值在坐标系中描点并连接,就得到了正弦函数的图像。

2.2 余弦函数图像

余弦函数 y = cos ⁡ ( x ) y = \cos(x) y=cos(x) 的图像也是一条波形曲线:

在这里插入图片描述

  • 周期:余弦函数的周期是 2 π 2\pi 2π ,即 cos ⁡ ( x + 2 π ) = cos ⁡ ( x ) \cos(x + 2\pi) = \cos(x) cos(x+2π)=cos(x)
  • 振幅:余弦函数的振幅是1,即最大值为1,最小值为-1。
  • 零点:余弦函数在 x = ( 2 k + 1 ) π 2 x = (2k+1)\frac{\pi}{2} x=(2k+1)2π 处有零点,其中 k k k 为整数。

推导:同样利用单位圆,可以得到余弦函数在不同角度下的值。将这些值在坐标系中描点并连接,就得到了余弦函数的图像。

2.3 正切函数图像

正切函数 y = tan ⁡ ( x ) y = \tan(x) y=tan(x) 的图像是一条反复无穷的曲线:

在这里插入图片描述

  • 周期:正切函数的周期是 π \pi π ,即 tan ⁡ ( x + π ) = tan ⁡ ( x ) \tan(x + \pi) = \tan(x) tan(x+π)=tan(x)
  • 零点:正切函数在 x = k π x = k\pi x= 处有零点,其中 k k k 为整数。
  • 垂直渐近线:正切函数在 x = ( 2 k + 1 ) π 2 x = (2k+1)\frac{\pi}{2} x=(2k+1)2π 处有垂直渐近线,其中 k k k 为整数。

推导:利用正切函数的定义 tan ⁡ ( x ) = sin ⁡ ( x ) cos ⁡ ( x ) \tan(x) = \frac{\sin(x)}{\cos(x)} tan(x)=cos(x)sin(x) ,在单位圆中描点并连接,就得到了正切函数的图像。

2.4 余割函数图像

余割函数 y = csc ⁡ ( x ) y = \csc(x) y=csc(x) 的图像是一条具有无限垂直渐近线的曲线:

在这里插入图片描述

  • 周期:余割函数的周期是 2 π 2\pi 2π ,即 csc ⁡ ( x + 2 π ) = csc ⁡ ( x ) \csc(x + 2\pi) = \csc(x) csc(x+2π)=csc(x)
  • 零点:余割函数没有零点,因为正弦函数为零时,余割函数无定义。
  • 垂直渐近线:余割函数在 x = k π x = k\pi x= 处有垂直渐近线,其中 k k k 为整数。

推导:利用余割函数的定义 csc ⁡ ( x ) = 1 sin ⁡ ( x ) \csc(x) = \frac{1}{\sin(x)} csc(x)=sin(x)1 ,当 sin ⁡ ( x ) = 0 \sin(x) = 0 sin(x)=0 时,余割函数无定义,因此在这些点有垂直渐近线。

2.5 正割函数图像

正割函数 y = sec ⁡ ( x ) y = \sec(x) y=sec(x) 的图像是一条具有无限垂直渐近线的曲线:

在这里插入图片描述

  • 周期:正割函数的周期是 2 π 2\pi 2π ,即 sec ⁡ ( x + 2 π ) = sec ⁡ ( x ) \sec(x + 2\pi) = \sec(x) sec(x+2π)=sec(x)
  • 零点:正割函数没有零点,因为余弦函数为零时,正割函数无定义。
  • 垂直渐近线:正割函数在 x = ( 2 k + 1 ) π 2 x = (2k+1)\frac{\pi}{2} x=(2k+1)2π 处有垂直渐近线,其中 k k k 为整数。

推导:利用正割函数的定义 sec ⁡ ( x ) = 1 cos ⁡ ( x ) \sec(x) = \frac{1}{\cos(x)} sec(x)=cos(x)1 ,当 cos ⁡ ( x ) = 0 \cos(x) = 0 cos(x)=0 时,正割函数无定义,因此在这些点有垂直渐近线。

2.6 余切函数图像

余切函数 y = cot ⁡ ( x ) y = \cot(x) y=cot(x) 的图像是一条反复无穷的曲线:

在这里插入图片描述

  • 周期:余切函数的周期是 π \pi π ,即 cot ⁡ ( x + π ) = cot ⁡ ( x ) \cot(x + \pi) = \cot(x) cot(x+π)=cot(x)
  • 零点:余切函数在 x = ( 2 k + 1 ) π 2 x = (2k+1)\frac{\pi}{2} x=(2k+1)2π 处有零点,其中 k k k 为整数。
  • 垂直渐近线:余切函数在 x = k π x = k\pi x= 处有垂直渐近线,其中 k k k 为整数。

推导:利用余切函数的定义 cot ⁡ ( x ) = 1 tan ⁡ ( x ) = cos ⁡ ( x ) sin ⁡ ( x ) \cot(x) = \frac{1}{\tan(x)} = \frac{\cos(x)}{\sin(x)} cot(x)=tan(x)1=sin(x)cos(x) ,在单位圆中描点并连接,就得到了余切函数的图像。

3. 三角函数的性质与公式

3.1 周期性

  1. 正弦和余弦函数的周期:正弦和余弦函数的周期是 2 π 2\pi 2π ,即:
    sin ⁡ ( x + 2 π ) = sin ⁡ ( x ) \sin(x + 2\pi) = \sin(x) sin(x+2π)=sin(x)
    cos ⁡ ( x + 2 π ) = cos ⁡ ( x ) \cos(x + 2\pi) = \cos(x) cos(x+2π)=cos(x)

推导:这是由于单位圆的周长是 2 π 2\pi 2π ,每过一个完整圆周,函数值重复。

  1. 正切和余切函数的周期:正切和余切函数的周期是 π \pi π ,即:
    tan ⁡ ( x + π ) = tan ⁡ ( x ) \tan(x + \pi) = \tan(x) tan(x+π)=tan(x)
    cot ⁡ ( x + π ) = cot ⁡ ( x ) \cot(x + \pi) = \cot(x) cot(x+π)=cot(x)

推导:因为正切和余切函数是由正弦和余弦函数的比值构成,而 π \pi π 角的周期性导致它们的周期为 π \pi π

3.2 对称性

  1. 奇偶性
    • 正弦函数是奇函数:
      sin ⁡ ( − x ) = − sin ⁡ ( x ) \sin(-x) = -\sin(x) sin(x)=sin(x)

    • 余弦函数是偶函数:
      cos ⁡ ( − x ) = cos ⁡ ( x ) \cos(-x) = \cos(x) cos(x)=cos(x)

推导:这是因为在单位圆中, θ \theta θ − θ -\theta θ 的y坐标相反,但x坐标相同。

  1. 正切函数的奇偶性
    • 正切函数是奇函数:
      tan ⁡ ( − x ) = − tan ⁡ ( x ) \tan(-x) = -\tan(x) tan(x)=tan(x)

推导:由正切函数的定义 tan ⁡ ( x ) = sin ⁡ ( x ) cos ⁡ ( x ) \tan(x) = \frac{\sin(x)}{\cos(x)} tan(x)=cos(x)sin(x) 和正弦、余弦函数的奇偶性可得。

3.3 和角公式

  1. 正弦和角公式
    sin ⁡ ( a + b ) = sin ⁡ ( a ) cos ⁡ ( b ) + cos ⁡ ( a ) sin ⁡ ( b ) \sin(a + b) = \sin(a)\cos(b) + \cos(a)\sin(b) sin(a+b)=sin(a)cos(b)+cos(a)sin(b)

推导:
考虑单位圆中的两个角 a a a b b b ,根据它们的终边位置和正弦、余弦函数定义可以推导出上述公式。

  1. 余弦和角公式
    cos ⁡ ( a + b ) = cos ⁡ ( a ) cos ⁡ ( b ) − sin ⁡ ( a ) sin ⁡ ( b ) \cos(a + b) = \cos(a)\cos(b) - \sin(a)\sin(b) cos(a+b)=cos(a)cos(b)sin(a)sin(b)

推导:
同样利用单位圆中的两个角 a a a b b b ,根据它们的终边位置和正弦、余弦函数定义可以推导出上述公式。

  1. 正切和角公式
    tan ⁡ ( a + b ) = tan ⁡ ( a ) + tan ⁡ ( b ) 1 − tan ⁡ ( a ) tan ⁡ ( b ) \tan(a + b) = \frac{\tan(a) + \tan(b)}{1 - \tan(a)\tan(b)} tan(a+b)=1tan(a)tan(b)tan(a)+tan(b)

推导:
利用正切函数的定义和正弦、余弦的和角公式,通过代数变换可以推导出上述公式。

3.4 倒数关系

  1. 余割函数
    csc ⁡ ( x ) = 1 sin ⁡ ( x ) \csc(x) = \frac{1}{\sin(x)} csc(x)=sin(x)1

  2. 正割函数
    sec ⁡ ( x ) = 1 cos ⁡ ( x ) \sec(x) = \frac{1}{\cos(x)} sec(x)=cos(x)1

  3. 余切函数
    cot ⁡ ( x ) = 1 tan ⁡ ( x ) \cot(x) = \frac{1}{\tan(x)} cot(x)=tan(x)1

推导:这些关系直接由三角函数的定义可以得出。

4. 三角函数的应用

4.1 波动和振动分析

  • 波动方程:正弦和余弦函数常用于描述波动现象,例如:
    y ( x , t ) = A sin ⁡ ( k x − ω t + ϕ ) y(x,t) = A \sin(kx - \omega t + \phi) y(x,t)=Asin(kxωt+ϕ)

此公式表示在时间和空间中传播

的波, A A A 是振幅, k k k 是波数, ω \omega ω 是角频率, ϕ \phi ϕ 是初相位。

4.2 信号处理

  • 傅里叶变换:在信号处理领域,傅里叶变换将信号分解为不同频率的正弦和余弦分量:
    F ( ω ) = ∫ − ∞ ∞ f ( t ) e − i ω t d t F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt F(ω)=f(t)etdt

4.3 天文学

  • 天体运动:利用三角函数计算天体轨道和位置,例如计算太阳、月亮、行星的相对位置。

4.4 工程学中的结构分析

  • 力分析:在建筑和机械工程中,三角函数用于分析力的方向和大小。例如,斜拉桥的力分析涉及正弦和余弦函数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值