转几道C#题及答案

转几道C#题及答案

 

1.string str=nullstring str=""有什么不同?

2.remotingwebservices有什么不同?

3.遍历所有的<filename>,使用递归方法,画出流程图。

 

答案:

1. 第一个是空引用(托管堆里无对象),第二个托管堆里有个空字符串

2. 都能开发分布式多层应用程序设计,如果需要在不同系统之间进行互操作,应该选择使用开放标准 (SOAPXMLHTTP) Web 服务方法,;如果各种系统中的所有组件都是 CLR 托管的,则 .NET Remoting“可能”是正确的选择

其他:

WebService是工业标准,基于Http协议传递.

Remoting.Net一个RPC调用机制,可以基于TCP协议,性能相对好

 

NET Remoting主要用于分布式程序开发,小项目一般用不到,且更适合企业内部网(局域网使用),而且支持二进制传输与比WebServices速度要快。WebService实际是个比较花消的东西,中看不中用,在数据量大的时候,速度奇慢无比。所以一般也很少用。

 

http://www.microsoft.com/china/MSDN/library/archives/library/dndotnet/html/dotnetremotearch.asp#dotnetremotearch_topic4

3.

using System;

using System.IO;

 

class ListAllFilesDemo

{

public static void Main ()

{

Console.Write("请输入要查询的目录: ");

string dir = Console.ReadLine();

try

{

ListFiles(new DirectoryInfo(dir));

}

catch(IOException e)

{

Console.WriteLine(e.Message);

}

}

 

public static void ListFiles(FileSystemInfo info)

{

if(!info.Exists) return;

 

DirectoryInfo dir = info as DirectoryInfo;

//不是目录

if(dir == null) return;

 

FileSystemInfo [] files = dir.GetFileSystemInfos();

for(int i = 0; i < files.Length; i++)

{

FileInfo file = files[i] as FileInfo;

//是文件

if(file != null)

Console.WriteLine(file.FullName + "/t" + file.Length);

//对于子目录,进行递归调用

else

ListFiles(files[i]);

 

}

}

}

 

以下是我自己的一点体会:

1.  string str=null,只是在栈中存在一个str 引用。

2.  递归算法:

一般在递归函数末尾设置两个选择(if …..else ).

1)      调用自身,向下一级延伸。(并不是真正的出口)

2)      递归的终止(真正的出口)

 

:

 递归算法及其应用

递归算法及其应用
http://www.mydrs.org  2002-7-4  大榕树


[递归的描述]
  由上面的例子可以看出,一般来说,递归需要有边界条件、递归前进段和递归返回段。当边界条件不满足时,递归前进;当边界条件满足时,递归返回。因此,在考虑使用递归算法编写程序时,应满足两点:1)该问题能够被递归形式描述;2)存在递归结束的边界条件。
  递归的能力在于用有限的语句来定义对象的无限集合。用递归思想写出的程序往往十分简洁易懂。

[
2] 给出一棵二叉树的中序与后序排列。求出它的先序排列。
[
分析] 通过对比二叉树的中序与后序排列,我们可以找出根节点及左右子树。同样的,有可以通过对比左子树的中序与后序排列,找出左子树的根节点……可见,该问题能够被递归描述。当找到最后一个根节点时,递归无法再进行下去,这就是递归结束的边界条件。由此可见,递归算法中常常隐含了分治思想。程序如下:
program chu01_3;
 var z,h: string;
 procedure find(a,b:string);
  var
   s,l : integer;
  begin
   l:=length(b);
   if l=1 then Write(b) {边界条件及递归返回段}
   else
    begin {递归前进段}
     Write(b[l]);
     s:=pos(b[l],a);
     if s-1>0 then find(copy(a,1,s-1),copy(b,1,s-1)); {递归左子树}
     if l-s>0 then find(copy(a,s+1,l-s),copy(b,s,l-s)); {递归右子树}
    end;
 end;
begin
 Readln(z);
 Readln(h);
 Find(z,h);
 Readln;
end.

[递归的应用]

1.
经典递归
  例如hanoi塔问题:经典的递归,原问题包含子问题。有些问题或者数据结构本来就是递归描述的,用递归做很自然。

2.
递归与递推
  利用递归的思想建立递推关系,如由兔子生崽而来的fibonacci数列。但递推由于没有返回段,因此更为简单,有时可以直接用循环实现。

3.
分治
  不少分治方法是源于递归思想,或是递归分解+合并处理。

4.
回溯
  规模较小的问题用回溯解决比较自然。注意递归前后要保证现场的保存和恢复,即正确的转化问题。

5.
动态规划
  动态规划的子问题重叠性质与递归有某种相似之处。递归+动态修改查表是一种不错的建立动态规划模型的方法。

6.
其他
  其他么,就是不好归类。例如表达式处理,排列组合等。附带说一下,用递归来处理打印方案的问题还是很方便的。

[
3] 求把一个整数n无序划分成k份互不相同的正整数之和的方法总数。
[
分析] 这是一道动态规划题,动态方程如下:
       f[i-1,j]+f[i,j-i]+1 (j mod i=0) and (j div i=1)
  f[i,j]:= f[i-1,j] (i>=j)
       f[i-1,j]+f[i,j-i] else
  s:=f(k,n-k)
本题可以用循环来实现递推,也可以考虑用递归求解。主过程如下:

方案一:
Procedure work(I,j:longint; var s:longint);
 Var t:longint;
 Begin
If (i=1) or (j=1) then s:=1
 Else if (i=0) or (j=0) then s:=0
   Else begin
       if (j mod i=0) and (j div i=1) then
            begin
             work(i-1,j,s);
             t:=s;
             work(i,j-1,s);
             s:=s+t+1;
            end
            else if (i>=j) then
                      work(i-1,j)
              else begin
                  work(i-1,j,s);
                  t:=s;
                  work(I,j-1,s);
                  s:=s+t;
                 end;
 End;

方案二:procedure search(v,w,last:byte);
var i:byte;
begin
 if w=0 then inc(count)
 else
  if w=1 then
   if v>=last then search(0,0,0) else
  else for i:=last to v-1 do search(v-i,w-1,i);
end;

  可以看出,方案一的程序较为冗长,消耗栈空间较大;而方案二较为简洁明了,所用的栈空间也较小,效率较高。因此,使用递归算法也有一个优化问题。算法的简洁与否直接制约了程序的可行性和效率。

[
总结]
  递归使一些复杂的问题处理起来简单明了,尤其在学习算法设计、数据结构时更能体会到这一点。但是,递归在每一次执行时都要为局部变量、返回地址分配栈空间,这就降低了运行效率,也限制了递归的深度。因此,在必要的时候可以只使用递归的思想来求解,而程序则转用非递归的方式书写。

 

 


 

 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值