# 一元四次方程欧拉解法的证明

3 篇文章 0 订阅

(1) x 4 + p x 2 + q x + r = ( x 2 + s x + t ) ( x 2 + u x + v ) x^4 + px^2 + qx + r=(x^2+sx+t)(x^2+ux+v)\tag{1}

(2) s = − u p = t − u 2 + v q = u ( v − t ) r = t v \begin{aligned} s&amp;=-u\\ p&amp;=t-u^2+v\\ q&amp;=u(v-t)\\ r&amp;=tv \tag{2} \end{aligned}

(3) s = − u t = ( p + u 2 − q u ) 2 v = ( p + u 2 + q u ) 2 \begin{aligned} s&amp;=-u\\ t&amp;=\frac{(p+u^2-\frac{q}{u})}{2}\\ v&amp;=\frac{(p+u^2+\frac{q}{u})}{2}\tag{3} \end{aligned}

(4) U 3 + 2 p U 2 + ( p 2 − 4 r ) U − q 2 = 0 U^3+2pU^2+(p^2-4r)U-q^2=0\tag{4}

(5) r 1 + r 2 + r 3 + r 4 = 0 r_1+r_2+r_3+r_4=0\tag{5}

(*) − ( r 1 + r 2 ) ( r 3 + r 4 ) = ( r 1 + r 2 ) 2 = α − ( r 1 + r 3 ) ( r 2 + r 4 ) = ( r 1 + r 3 ) 2 = β − ( r 1 + r 4 ) ( r 2 + r 3 ) = ( r 1 + r 4 ) 2 = γ 根据韦达定理 r 1 + r 2 = − u , r 3 + r 4 = u \begin{aligned} -(r_1+r_2)(r_3+r_4) &amp;=(r_1+r_2)^2=\alpha\\ -(r_1+r_3)(r_2+r_4) &amp;=(r_1+r_3)^2= \beta\\ -(r_1+r_4)(r_2+r_3) &amp;= (r_1+r_4)^2=\gamma\tag{*}\text{根据韦达定理$r_1+r_2=-u,r_3+r_4=u$} \end{aligned}

(6) [ − ( r 1 + r 2 ) ( r 3 + r 4 ) ] + [ − ( r 1 + r 3 ) ( r 2 + r 4 ) ] + [ − ( r 1 + r 4 ) ( r 2 + r 3 ) ] = α + β + γ = − 2 p [-(r_1+r_2)(r_3+r_4)]+[-(r_1+r_3)(r_2+r_4)] +[-(r_1+r_4)(r_2+r_3)]=\alpha+ \beta+\gamma=-2p\tag{6}
(7) [ − ( r 1 + r 2 ) ( r 3 + r 4 ) ] [ − ( r 1 + r 3 ) ( r 2 + r 4 ) ] + [ − ( r 1 + r 2 ) ( r 3 + r 4 ) ] [ − ( r 1 + r 4 ) ( r 2 + r 3 ) ] + [ − ( r 1 + r 3 ) ( r 2 + r 4 ) ] [ − ( r 1 + r 4 ) ( r 2 + r 3 ) ] = α β + α γ + β γ = p 2 − 4 r [-(r_1+r_2)(r_3+r_4)][-(r_1+r_3)(r_2+r_4)]+[-(r_1+r_2)(r_3+r_4)][-(r_1+r_4)(r_2+r_3)]\\ +[-(r_1+r_3)(r_2+r_4) ][-(r_1+r_4)(r_2+r_3)]=\alpha\beta+\alpha\gamma+\beta\gamma=p^2-4r\tag{7}
(8) [ − ( r 1 + r 2 ) ( r 3 + r 4 ) ] [ − ( r 1 + r 3 ) ( r 2 + r 4 ) ] [ − ( r 1 + r 4 ) ( r 2 + r 3 ) ] = α β γ = q 2 [-(r_1+r_2)(r_3+r_4)][-(r_1+r_3)(r_2+r_4)][-(r_1+r_4)(r_2+r_3)]=\alpha\beta\gamma=q^2\tag{8}

(9) ( r 1 + r 2 + r 3 + r 4 ) 2 = r 1 2 + r 2 2 + r 3 2 + r 4 2 + 2 r 1 r 2 + 2 r 1 r 3 + 2 r 1 r 4 + 2 r 2 r 3 + 2 r 2 r 4 + 2 r 3 r 4 = ( r 1 2 + r 2 2 + r 3 2 + r 4 2 ) + ( r 1 + r 2 ) ( r 3 + r 4 ) + ( r 1 + r 3 ) ( r 2 + r 4 ) + ( r 1 + r 4 ) ( r 2 + r 3 ) = 0 \begin{aligned} (r1+r2+r3+r4)^2=r1^2+r2^2+r3^2+r4^2+2r_1r_2+2r_1r_3+2r_1r_4+2r_2r_3+2r_2r_4+2r_3r_4\\ =(r1^2+r2^2+r3^2+r4^2)+(r_1+r_2)(r_3+r_4)+(r_1+r_3)(r_2+r_4)+(r_1+r_4)(r_2+r_3)=0\tag{9} \end{aligned}

( r 1 + r 2 ) ( r 3 + r 4 ) + ( r 1 + r 3 ) ( r 2 + r 4 ) + ( r 1 + r 4 ) ( r 2 + r 3 ) = − ( r 1 2 + r 2 2 + r 3 2 + r 4 2 ) = 2 u 2 − 2 ( t + v ) = − 2 p \begin{aligned} (r_1+r_2)(r_3+r_4)+(r_1+r_3)(r_2+r_4)+(r_1+r_4)(r_2+r_3)&amp;=-(r1^2+r2^2+r3^2+r4^2)\\ &amp;=2u^2-2(t+v) \\ &amp;=-2p \end{aligned}
(7)式可以表示成
[ ( r 1 + r 2 ) ( r 1 + r 3 ) ] 2 + [ ( r 1 + r 2 ) ( r 1 + r 4 ) ] 2 + [ ( r 1 + r 3 ) ( r 1 + r 4 ) ] 2 = ( r 1 2 + r 1 r 2 + r 1 r 3 + r 2 r 3 ) 2 + ( r 1 2 + r 1 r 2 + r 1 r 4 + r 2 r 4 ) 2 + ( r 1 2 + r 1 r 3 + r 1 r 4 + r 3 r 4 ) 2 = ( r 1 2 ) 2 + ( r 1 r 2 ) 2 + ( r 1 r 3 ) 2 + ( r 2 r 3 ) 2 + 2 r 1 3 r 2 + 2 r 1 3 r 3 + 2 r 1 2 r 2 r 3 + 2 r 1 2 r 2 r 3 + 2 r 1 r 2 2 r 3 + 2 r 1 r 2 r 3 2 + ( r 1 2 ) 2 + ( r 1 r 2 ) 2 + ( r 1 r 4 ) 2 + ( r 2 r 4 ) 2 + 2 r 1 3 r 2 + 2 r 1 3 r 4 + 2 r 1 2 r 2 r 4 + 2 r 1 2 r 2 r 4 + 2 r 1 r 2 2 r 4 + 2 r 1 r 2 r 4 2 + ( r 1 2 ) 2 + ( r 1 r 3 ) 2 + ( r 1 r 4 ) 2 + ( r 3 r 4 ) 2 + 2 r 1 3 r 3 + 2 r 1 3 r 4 + 2 r 1 2 r 3 r 4 + 2 r 1 2 r 3 r 4 + 2 r 1 r 3 2 r 4 + 2 r 1 r 3 r 4 2 \begin{aligned} [(r_1+r_2)(r_1+r_3)]^2+[(r_1+r_2)(r_1+r_4)]^2+[(r_1+r_3)(r_1+r_4)]^2&amp;=\\ (r_1^2+r_1r_2+r_1r_3+r_2r_3)^2+(r1^2+r_1r_2+r_1r_4+r_2r_4)^2+(r_1^2+r_1r_3+r_1r_4+r_3r_4)^2&amp;=\\ (r_1^2)^2+(r_1r_2)^2+(r_1r_3)^2+(r_2r_3)^2+2r_1^3r_2+2r_1^3r_3+2r_1^2r_2r_3+2r_1^2r_2r_3+2r_1r_2^2r_3+2r_1r_2r_3^2+\\ (r_1^2)^2+(r_1r_2)^2+(r_1r_4)^2+(r_2r_4)^2+2r_1^3r_2+2r_1^3r_4+2r_1^2r_2r_4+2r_1^2r_2r_4+2r_1r_2^2r_4+2r_1r_2r_4^2+\\ (r_1^2)^2+(r_1r_3)^2+(r_1r_4)^2+(r_3r_4)^2+2r1^3r_3+2r_1^3r_4+2r_1^2r_3r_4+2r_1^2r_3r_4+2r_1r_3^2r_4+2r_1r_3r_4^2 \end{aligned}

3 ( r 1 2 ) 2 + 2 r 1 2 ( r 2 2 + r 3 2 + r 4 2 ) + r 2 2 ( r 3 2 + r 4 2 ) + r 3 2 r 4 2 + 4 r 1 3 r 2 + 4 r 1 3 r 3 + 4 r 1 3 r 4 + 4 r 1 2 r 2 r 3 + 4 r 1 2 r 2 r 4 + 4 r 1 3 r 3 r 4 + 2 r 1 r 2 2 r 3 + 2 r 1 r 2 r 3 2 + 2 r 1 r 2 2 r 4 + 2 r 1 r 2 r 4 2 + 2 r 1 r 3 2 r 4 + 2 r 1 r 3 r 4 2 = r 1 4 + r 2 2 ( r 3 2 + r 4 2 ) + r 3 2 r 4 2 + 2 r 1 r 2 2 r 3 + 2 r 1 r 2 r 3 2 + 2 r 1 r 2 2 r 4 + 2 r 1 r 2 r 4 2 + 2 r 1 r 3 2 r 4 + 2 r 1 r 3 r 4 2 = r 1 4 + r 2 2 ( r 3 2 + r 4 2 ) + r 3 2 r 4 2 + 2 r 1 r 2 [ r 2 ( r 3 + r 4 ) + ( r 3 2 + r 4 2 ) ] + 2 r 1 r 3 r 4 ( r 3 + r 4 ) \begin{aligned} 3(r_1^2)^2+2r_1^2(r_2^2+r_3^2+r_4^2)+r_2^2(r_3^2+r_4^2)+r_3^2r_4^2+4r_1^3r_2+4r_1^3r_3+4r_1^3r_4+4r_1^2r_2r_3+4r_1^2r_2r_4+4r_1^3r_3r_4&amp;+\\ 2r_1r_2^2r_3+2r_1r_2r_3^2+2r_1r_2^2r_4+2r_1r_2r_4^2+2r_1r_3^2r_4+2r_1r_3r_4^2&amp;=\\ r_1^4+r_2^2(r_3^2+r_4^2)+r_3^2r_4^2+2r_1r_2^2r_3+2r_1r_2r_3^2+2r_1r_2^2r_4+2r_1r_2r_4^2+2r_1r_3^2r_4+2r_1r_3r_4^2&amp;=\\ r_1^4+r_2^2(r_3^2+r_4^2)+r_3^2r_4^2+2r_1r_2[r_2(r_3+r_4)+(r_3^2+r_4^2)]+2r_1r_3r_4(r_3+r_4) \end{aligned}

r 1 4 + ( u 2 − 2 t − r 1 2 ) ( u 2 − 2 v ) + v 2 + 2 t [ ( − u − r 1 ) u + u 2 − 2 v ] + 2 r 1 u v = r 1 4 + ( u 2 − 2 t ) ( u 2 − 2 v ) + v 2 − r 1 2 ( u 2 − 2 v ) + 2 u ( v − t ) r 1 − 4 t v = r 1 4 + u 4 − 2 ( t + v ) u 2 + v 2 + 4 t v − r 1 2 ( u 2 − 2 v ) + 2 u ( v − t ) r 1 − 4 t v = r 1 4 + ( t + v − u 2 ) 2 − t 2 − 2 t v − r 1 2 ( u 2 − 2 v ) + 2 u ( v − t ) r 1 = r 1 4 + ( v + t − u 2 ) r 1 2 + ( v − t ) r 1 2 + 2 u ( v − t ) r 1 + ( t + v − u 2 ) 2 − t 2 − 2 t v = r 1 4 + ( v + t − u 2 ) r 1 2 + u ( v − t ) r 1 + t v + ( v − t ) r 1 2 + u ( v − t ) r 1 + ( v − t ) t + ( t + v − u 2 ) 2 − 4 t v = p 2 − 4 r \begin{aligned} r_1^4+(u^2-2t-r_1^2)(u^2-2v)+v^2+2t[(-u-r_1)u+u^2-2v]+2r_1uv&amp;=\\ r_1^4+(u^2-2t)(u^2-2v)+v^2-r_1^2(u^2-2v)+2u(v-t)r_1-4tv&amp;=\\ r_1^4+u^4-2(t+v)u^2+v^2+4tv-r_1^2(u^2-2v)+2u(v-t)r_1-4tv&amp;=\\ r_1^4+(t+v-u^2)^2-t^2-2tv-r_1^2(u^2-2v)+2u(v-t)r_1&amp;=\\ r_1^4+(v+t-u^2)r_1^2+(v-t)r_1^2+2u(v-t)r_1+(t+v-u^2)^2-t^2-2tv&amp;=\\ r_1^4+(v+t-u^2)r_1^2+u(v-t)r_1+tv+(v-t)r_1^2+u(v-t)r_1+(v-t)t+(t+v-u^2)^2-4tv&amp;=\\ p^2-4r \end{aligned}
(7)式也得到证明，下面证明等式(8)成立只需要证明 ( r 1 + r 2 ) ( r 1 + r 3 ) ( r 1 + r 4 ) (r_1+r_2)(r_1+r_3)(r_1+r_4) 等于 ± q \pm q 就可以了
( r 1 + r 2 ) ( r 1 + r 3 ) ( r 1 + r 4 ) = r 1 3 + r 1 2 r 2 + r 1 2 r 3 + r 1 2 r 4 + r 1 r 2 r 3 + r 1 r 2 r 4 + r 1 r 3 r 4 + r 2 r 3 r 4 = r 1 2 ( r 1 + r 2 + r 3 + r 4 ) + r 1 r 2 r 3 + r 1 r 2 r 4 + r 1 r 3 r 4 + r 2 r 3 r 4 = r 1 r 2 ( r 3 + r 4 ) + ( r 1 + r 2 ) r 3 r 4 = u ( t − v ) = − q \begin{aligned} (r_1+r_2)(r_1+r_3)(r_1+r_4)&amp;=\\ r_1^3+r_1^2r_2+r_1^2r_3+r_1^2r_4+r_1r_2r_3+r_1r_2r_4+r_1r_3r_4+r_2r_3r_4&amp;=\\ r_1^2(r_1+r_2+r_3+r_4)+r_1r_2r_3+r_1r_2r_4+r_1r_3r_4+r_2r_3r_4&amp;=\\ r_1r_2(r_3+r_4)+(r_1+r_2)r_3r_4&amp;=\\ u(t-v)&amp;=-q \end{aligned}

r 1 + r 3 = ± β , r 1 + r 4 = ± γ r_1+r_3=\pm \sqrt{\beta},r_1+r_4=\pm \sqrt{\gamma} 有四种可能的选择，枚举并求出所有的解之后r1,r2,r3,r4的解的集合分成两组 { r 1 , r 2 , r 3 , r 4 } \{r_1,r_2,r_3,r_4\} { − r 1 , − r 2 , − r 3 , − r 4 } \{-r_1,-r_2,-r_3,-r_4\} ,但并不是所有的取值都满足(3),因为选取其中一组计算
r 1 r 2 = [ α − ( β + γ − 2 β γ ) ] / 4 = [ 2 α − ( α + β + γ ) − 2 β γ ] / 4 = p + α 2 − β γ 2 = t = ( p + α 2 − q α ) 2 ⇒ q α = β γ \begin{aligned} r_1r_2=[\alpha-(\beta+\gamma-2\sqrt{\beta}\sqrt{\gamma})]/4= [2\alpha-(\alpha+\beta+\gamma)-2\sqrt{\beta}\sqrt{\gamma}]/4&amp;=\\ \frac{p+{\sqrt{\alpha}}^2-\sqrt{\beta}\sqrt{\gamma}}{2}=t&amp;=\frac{(p+{\sqrt{\alpha}}^2-\frac{q}{\sqrt{\alpha}})}{2}\\ \Rightarrow \frac{q}{\sqrt{\alpha}} = \sqrt{\beta}\sqrt{\gamma} \end{aligned}

(10) r 1 + r 2 + r 3 + r 4 = 0 r 1 + r 2 = α r 1 + r 3 = β r 1 + r 4 = γ \begin{aligned} r_1+r_2+r_3+r_4=0 \\ r_1+r_2=\sqrt{\alpha}\\ r_1+r_3=\sqrt{\beta} \\ r_1+r4=\sqrt{\gamma}\tag{10} \end{aligned}

(2) r 1 = α + β + γ 2 r 2 = α − β − γ 2 r 3 = − α + β − γ 2 r 4 = − α − β + γ 2 \begin{aligned} r_1&amp;=\frac{\sqrt{\alpha}+\sqrt{\beta}+\sqrt{\gamma}}{2} \\ r_2&amp;=\frac{\sqrt{\alpha}-\sqrt{\beta}-\sqrt{\gamma}}{2} \\ r_3&amp;=\frac{-\sqrt{\alpha}+\sqrt{\beta}-\sqrt{\gamma}}{2} \\ r_4&amp;=\frac{-\sqrt{\alpha}-\sqrt{\beta}+\sqrt{\gamma}}{2}\tag{2} \end{aligned}

03-27
01-21
07-10 8762
11-03 1万+
11-09 9812
07-24
01-15 1264
10-08 4799
12-22 6195

### “相关推荐”对你有帮助么？

• 非常没帮助
• 没帮助
• 一般
• 有帮助
• 非常有帮助

Daisy__Ben

¥2 ¥4 ¥6 ¥10 ¥20

1.余额是钱包充值的虚拟货币，按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载，可以购买VIP、C币套餐、付费专栏及课程。