高等代数的教科书里面讲到使用Ferrari(费拉里)解法求解四次方程时,从三次方程求得u的三个根,如果依次代入分解后的两个二次方程的系数,最后求的四次方程的解,如果对每一个u四次方程都有4个解,那么是不是最后有
3
∗
4
=
12
3*4=12
3∗4=12个解呢?很多教材只是简单的讲到对每一个u四次方程的解都是一样(当然根据代数基本定理可知仅有4个根)。就这么简单一句要秒杀多少脑细胞。直接证明有点难,反正作者本人是没能直接证明出来。现在介绍欧拉的方法解四次方程,从另一个角度能看到为什么对于每一个u求解出来的四次方程的根相同。每一个一元四次方程变量代换x=y-b/4都可以消去三次项变成为下式
(1)
x
4
+
p
x
2
+
q
x
+
r
=
(
x
2
+
s
x
+
t
)
(
x
2
+
u
x
+
v
)
x^4 + px^2 + qx + r=(x^2+sx+t)(x^2+ux+v)\tag{1}
x4+px2+qx+r=(x2+sx+t)(x2+ux+v)(1)
根据(1)式求待定的系数得到下面的方程组
(2)
s
=
−
u
p
=
t
−
u
2
+
v
q
=
u
(
v
−
t
)
r
=
t
v
\begin{aligned} s&=-u\\ p&=t-u^2+v\\ q&=u(v-t)\\ r&=tv \tag{2} \end{aligned}
spqr=−u=t−u2+v=u(v−t)=tv(2)
整理方程组,将u,t,v看作是变量则根据三元一次方程组可以求得下面的关系
(3)
s
=
−
u
t
=
(
p
+
u
2
−
q
u
)
2
v
=
(
p
+
u
2
+
q
u
)
2
\begin{aligned} s&=-u\\ t&=\frac{(p+u^2-\frac{q}{u})}{2}\\ v&=\frac{(p+u^2+\frac{q}{u})}{2}\tag{3} \end{aligned}
stv=−u=2(p+u2−uq)=2(p+u2+uq)(3)
且由于
u
2
(
p
+
u
2
)
2
−
q
2
=
4
u
2
r
u^2(p+u^2)^2-q^2=4u^2r
u2(p+u2)2−q2=4u2r若设
U
=
u
2
U=u^2
U=u2则U满足下面的三次多项式
(4)
U
3
+
2
p
U
2
+
(
p
2
−
4
r
)
U
−
q
2
=
0
U^3+2pU^2+(p^2-4r)U-q^2=0\tag{4}
U3+2pU2+(p2−4r)U−q2=0(4)
回过头来看等式(1)如果设
r
1
r_1
r1与
r
2
r_2
r2是方程
x
2
+
s
x
+
t
=
0
x^2+sx+t=0
x2+sx+t=0的根,
r
3
r_3
r3和
r
4
r_4
r4是方程
x
2
+
u
x
+
v
=
0
x^2+ux+v=0
x2+ux+v=0的两个根。显然有下面的等式成立
(5)
r
1
+
r
2
+
r
3
+
r
4
=
0
r_1+r_2+r_3+r_4=0\tag{5}
r1+r2+r3+r4=0(5)
且因为
−
(
r
1
+
r
2
)
(
r
3
+
r
4
)
=
u
2
-(r_1+r_2)(r_3+r_4)=u^2
−(r1+r2)(r3+r4)=u2所以
−
(
r
1
+
r
2
)
(
r
3
+
r
4
)
-(r_1+r_2)(r_3+r_4)
−(r1+r2)(r3+r4)也一定是方程(4)的解。那方程(4)的另外两个根会是什么呢?普通人思考到这里时也许就戛然而止了,但是欧拉却继续发现两外两个根是
−
(
r
1
+
r
3
)
(
r
2
+
r
4
)
-(r_1+r_3)(r_2+r_4)
−(r1+r3)(r2+r4)与
−
(
r
1
+
r
4
)
(
r
2
+
r
3
)
-(r_1+r_4)(r_2+r_3)
−(r1+r4)(r2+r3)若令
(*)
−
(
r
1
+
r
2
)
(
r
3
+
r
4
)
=
(
r
1
+
r
2
)
2
=
α
−
(
r
1
+
r
3
)
(
r
2
+
r
4
)
=
(
r
1
+
r
3
)
2
=
β
−
(
r
1
+
r
4
)
(
r
2
+
r
3
)
=
(
r
1
+
r
4
)
2
=
γ
根据韦达定理
r
1
+
r
2
=
−
u
,
r
3
+
r
4
=
u
\begin{aligned} -(r_1+r_2)(r_3+r_4) &=(r_1+r_2)^2=\alpha\\ -(r_1+r_3)(r_2+r_4) &=(r_1+r_3)^2= \beta\\ -(r_1+r_4)(r_2+r_3) &= (r_1+r_4)^2=\gamma\tag{*}\text{根据韦达定理$r_1+r_2=-u,r_3+r_4=u$} \end{aligned}
−(r1+r2)(r3+r4)−(r1+r3)(r2+r4)−(r1+r4)(r2+r3)=(r1+r2)2=α=(r1+r3)2=β=(r1+r4)2=γ根据韦达定理r1+r2=−u,r3+r4=u(*)
要证明它们是方程(4)的三个根那么等同于必须满足韦达定理的条件,即满足
(6)
[
−
(
r
1
+
r
2
)
(
r
3
+
r
4
)
]
+
[
−
(
r
1
+
r
3
)
(
r
2
+
r
4
)
]
+
[
−
(
r
1
+
r
4
)
(
r
2
+
r
3
)
]
=
α
+
β
+
γ
=
−
2
p
[-(r_1+r_2)(r_3+r_4)]+[-(r_1+r_3)(r_2+r_4)] +[-(r_1+r_4)(r_2+r_3)]=\alpha+ \beta+\gamma=-2p\tag{6}
[−(r1+r2)(r3+r4)]+[−(r1+r3)(r2+r4)]+[−(r1+r4)(r2+r3)]=α+β+γ=−2p(6)
(7)
[
−
(
r
1
+
r
2
)
(
r
3
+
r
4
)
]
[
−
(
r
1
+
r
3
)
(
r
2
+
r
4
)
]
+
[
−
(
r
1
+
r
2
)
(
r
3
+
r
4
)
]
[
−
(
r
1
+
r
4
)
(
r
2
+
r
3
)
]
+
[
−
(
r
1
+
r
3
)
(
r
2
+
r
4
)
]
[
−
(
r
1
+
r
4
)
(
r
2
+
r
3
)
]
=
α
β
+
α
γ
+
β
γ
=
p
2
−
4
r
[-(r_1+r_2)(r_3+r_4)][-(r_1+r_3)(r_2+r_4)]+[-(r_1+r_2)(r_3+r_4)][-(r_1+r_4)(r_2+r_3)]\\ +[-(r_1+r_3)(r_2+r_4) ][-(r_1+r_4)(r_2+r_3)]=\alpha\beta+\alpha\gamma+\beta\gamma=p^2-4r\tag{7}
[−(r1+r2)(r3+r4)][−(r1+r3)(r2+r4)]+[−(r1+r2)(r3+r4)][−(r1+r4)(r2+r3)]+[−(r1+r3)(r2+r4)][−(r1+r4)(r2+r3)]=αβ+αγ+βγ=p2−4r(7)
(8)
[
−
(
r
1
+
r
2
)
(
r
3
+
r
4
)
]
[
−
(
r
1
+
r
3
)
(
r
2
+
r
4
)
]
[
−
(
r
1
+
r
4
)
(
r
2
+
r
3
)
]
=
α
β
γ
=
q
2
[-(r_1+r_2)(r_3+r_4)][-(r_1+r_3)(r_2+r_4)][-(r_1+r_4)(r_2+r_3)]=\alpha\beta\gamma=q^2\tag{8}
[−(r1+r2)(r3+r4)][−(r1+r3)(r2+r4)][−(r1+r4)(r2+r3)]=αβγ=q2(8)
现在分别来证明(6)(7)(8),由等式(5)可以得出
(9)
(
r
1
+
r
2
+
r
3
+
r
4
)
2
=
r
1
2
+
r
2
2
+
r
3
2
+
r
4
2
+
2
r
1
r
2
+
2
r
1
r
3
+
2
r
1
r
4
+
2
r
2
r
3
+
2
r
2
r
4
+
2
r
3
r
4
=
(
r
1
2
+
r
2
2
+
r
3
2
+
r
4
2
)
+
(
r
1
+
r
2
)
(
r
3
+
r
4
)
+
(
r
1
+
r
3
)
(
r
2
+
r
4
)
+
(
r
1
+
r
4
)
(
r
2
+
r
3
)
=
0
\begin{aligned} (r1+r2+r3+r4)^2=r1^2+r2^2+r3^2+r4^2+2r_1r_2+2r_1r_3+2r_1r_4+2r_2r_3+2r_2r_4+2r_3r_4\\ =(r1^2+r2^2+r3^2+r4^2)+(r_1+r_2)(r_3+r_4)+(r_1+r_3)(r_2+r_4)+(r_1+r_4)(r_2+r_3)=0\tag{9} \end{aligned}
(r1+r2+r3+r4)2=r12+r22+r32+r42+2r1r2+2r1r3+2r1r4+2r2r3+2r2r4+2r3r4=(r12+r22+r32+r42)+(r1+r2)(r3+r4)+(r1+r3)(r2+r4)+(r1+r4)(r2+r3)=0(9)
所以有
(
r
1
+
r
2
)
(
r
3
+
r
4
)
+
(
r
1
+
r
3
)
(
r
2
+
r
4
)
+
(
r
1
+
r
4
)
(
r
2
+
r
3
)
=
−
(
r
1
2
+
r
2
2
+
r
3
2
+
r
4
2
)
=
2
u
2
−
2
(
t
+
v
)
=
−
2
p
\begin{aligned} (r_1+r_2)(r_3+r_4)+(r_1+r_3)(r_2+r_4)+(r_1+r_4)(r_2+r_3)&=-(r1^2+r2^2+r3^2+r4^2)\\ &=2u^2-2(t+v) \\ &=-2p \end{aligned}
(r1+r2)(r3+r4)+(r1+r3)(r2+r4)+(r1+r4)(r2+r3)=−(r12+r22+r32+r42)=2u2−2(t+v)=−2p
(7)式可以表示成
[
(
r
1
+
r
2
)
(
r
1
+
r
3
)
]
2
+
[
(
r
1
+
r
2
)
(
r
1
+
r
4
)
]
2
+
[
(
r
1
+
r
3
)
(
r
1
+
r
4
)
]
2
=
(
r
1
2
+
r
1
r
2
+
r
1
r
3
+
r
2
r
3
)
2
+
(
r
1
2
+
r
1
r
2
+
r
1
r
4
+
r
2
r
4
)
2
+
(
r
1
2
+
r
1
r
3
+
r
1
r
4
+
r
3
r
4
)
2
=
(
r
1
2
)
2
+
(
r
1
r
2
)
2
+
(
r
1
r
3
)
2
+
(
r
2
r
3
)
2
+
2
r
1
3
r
2
+
2
r
1
3
r
3
+
2
r
1
2
r
2
r
3
+
2
r
1
2
r
2
r
3
+
2
r
1
r
2
2
r
3
+
2
r
1
r
2
r
3
2
+
(
r
1
2
)
2
+
(
r
1
r
2
)
2
+
(
r
1
r
4
)
2
+
(
r
2
r
4
)
2
+
2
r
1
3
r
2
+
2
r
1
3
r
4
+
2
r
1
2
r
2
r
4
+
2
r
1
2
r
2
r
4
+
2
r
1
r
2
2
r
4
+
2
r
1
r
2
r
4
2
+
(
r
1
2
)
2
+
(
r
1
r
3
)
2
+
(
r
1
r
4
)
2
+
(
r
3
r
4
)
2
+
2
r
1
3
r
3
+
2
r
1
3
r
4
+
2
r
1
2
r
3
r
4
+
2
r
1
2
r
3
r
4
+
2
r
1
r
3
2
r
4
+
2
r
1
r
3
r
4
2
\begin{aligned} [(r_1+r_2)(r_1+r_3)]^2+[(r_1+r_2)(r_1+r_4)]^2+[(r_1+r_3)(r_1+r_4)]^2&=\\ (r_1^2+r_1r_2+r_1r_3+r_2r_3)^2+(r1^2+r_1r_2+r_1r_4+r_2r_4)^2+(r_1^2+r_1r_3+r_1r_4+r_3r_4)^2&=\\ (r_1^2)^2+(r_1r_2)^2+(r_1r_3)^2+(r_2r_3)^2+2r_1^3r_2+2r_1^3r_3+2r_1^2r_2r_3+2r_1^2r_2r_3+2r_1r_2^2r_3+2r_1r_2r_3^2+\\ (r_1^2)^2+(r_1r_2)^2+(r_1r_4)^2+(r_2r_4)^2+2r_1^3r_2+2r_1^3r_4+2r_1^2r_2r_4+2r_1^2r_2r_4+2r_1r_2^2r_4+2r_1r_2r_4^2+\\ (r_1^2)^2+(r_1r_3)^2+(r_1r_4)^2+(r_3r_4)^2+2r1^3r_3+2r_1^3r_4+2r_1^2r_3r_4+2r_1^2r_3r_4+2r_1r_3^2r_4+2r_1r_3r_4^2 \end{aligned}
[(r1+r2)(r1+r3)]2+[(r1+r2)(r1+r4)]2+[(r1+r3)(r1+r4)]2(r12+r1r2+r1r3+r2r3)2+(r12+r1r2+r1r4+r2r4)2+(r12+r1r3+r1r4+r3r4)2(r12)2+(r1r2)2+(r1r3)2+(r2r3)2+2r13r2+2r13r3+2r12r2r3+2r12r2r3+2r1r22r3+2r1r2r32+(r12)2+(r1r2)2+(r1r4)2+(r2r4)2+2r13r2+2r13r4+2r12r2r4+2r12r2r4+2r1r22r4+2r1r2r42+(r12)2+(r1r3)2+(r1r4)2+(r3r4)2+2r13r3+2r13r4+2r12r3r4+2r12r3r4+2r1r32r4+2r1r3r42==
根据(9)式有
r
2
2
+
r
3
2
+
r
4
2
=
−
r
1
2
−
2
r
1
r
2
−
2
r
1
r
3
−
2
r
1
r
4
−
2
r
2
r
3
−
2
r
2
r
4
−
2
r
3
r
4
r_2^2+r_3^2+r_4^2=-r_1^2-2r_1r_2-2r_1r_3-2r_1r_4-2r_2r_3-2r_2r_4-2r_3r_4
r22+r32+r42=−r12−2r1r2−2r1r3−2r1r4−2r2r3−2r2r4−2r3r4代入上式化简为
3
(
r
1
2
)
2
+
2
r
1
2
(
r
2
2
+
r
3
2
+
r
4
2
)
+
r
2
2
(
r
3
2
+
r
4
2
)
+
r
3
2
r
4
2
+
4
r
1
3
r
2
+
4
r
1
3
r
3
+
4
r
1
3
r
4
+
4
r
1
2
r
2
r
3
+
4
r
1
2
r
2
r
4
+
4
r
1
3
r
3
r
4
+
2
r
1
r
2
2
r
3
+
2
r
1
r
2
r
3
2
+
2
r
1
r
2
2
r
4
+
2
r
1
r
2
r
4
2
+
2
r
1
r
3
2
r
4
+
2
r
1
r
3
r
4
2
=
r
1
4
+
r
2
2
(
r
3
2
+
r
4
2
)
+
r
3
2
r
4
2
+
2
r
1
r
2
2
r
3
+
2
r
1
r
2
r
3
2
+
2
r
1
r
2
2
r
4
+
2
r
1
r
2
r
4
2
+
2
r
1
r
3
2
r
4
+
2
r
1
r
3
r
4
2
=
r
1
4
+
r
2
2
(
r
3
2
+
r
4
2
)
+
r
3
2
r
4
2
+
2
r
1
r
2
[
r
2
(
r
3
+
r
4
)
+
(
r
3
2
+
r
4
2
)
]
+
2
r
1
r
3
r
4
(
r
3
+
r
4
)
\begin{aligned} 3(r_1^2)^2+2r_1^2(r_2^2+r_3^2+r_4^2)+r_2^2(r_3^2+r_4^2)+r_3^2r_4^2+4r_1^3r_2+4r_1^3r_3+4r_1^3r_4+4r_1^2r_2r_3+4r_1^2r_2r_4+4r_1^3r_3r_4&+\\ 2r_1r_2^2r_3+2r_1r_2r_3^2+2r_1r_2^2r_4+2r_1r_2r_4^2+2r_1r_3^2r_4+2r_1r_3r_4^2&=\\ r_1^4+r_2^2(r_3^2+r_4^2)+r_3^2r_4^2+2r_1r_2^2r_3+2r_1r_2r_3^2+2r_1r_2^2r_4+2r_1r_2r_4^2+2r_1r_3^2r_4+2r_1r_3r_4^2&=\\ r_1^4+r_2^2(r_3^2+r_4^2)+r_3^2r_4^2+2r_1r_2[r_2(r_3+r_4)+(r_3^2+r_4^2)]+2r_1r_3r_4(r_3+r_4) \end{aligned}
3(r12)2+2r12(r22+r32+r42)+r22(r32+r42)+r32r42+4r13r2+4r13r3+4r13r4+4r12r2r3+4r12r2r4+4r13r3r42r1r22r3+2r1r2r32+2r1r22r4+2r1r2r42+2r1r32r4+2r1r3r42r14+r22(r32+r42)+r32r42+2r1r22r3+2r1r2r32+2r1r22r4+2r1r2r42+2r1r32r4+2r1r3r42r14+r22(r32+r42)+r32r42+2r1r2[r2(r3+r4)+(r32+r42)]+2r1r3r4(r3+r4)+==
根据(2)式与韦达定理使用变量uvt替换r3,r4将上式进一步化简为
r
1
4
+
(
u
2
−
2
t
−
r
1
2
)
(
u
2
−
2
v
)
+
v
2
+
2
t
[
(
−
u
−
r
1
)
u
+
u
2
−
2
v
]
+
2
r
1
u
v
=
r
1
4
+
(
u
2
−
2
t
)
(
u
2
−
2
v
)
+
v
2
−
r
1
2
(
u
2
−
2
v
)
+
2
u
(
v
−
t
)
r
1
−
4
t
v
=
r
1
4
+
u
4
−
2
(
t
+
v
)
u
2
+
v
2
+
4
t
v
−
r
1
2
(
u
2
−
2
v
)
+
2
u
(
v
−
t
)
r
1
−
4
t
v
=
r
1
4
+
(
t
+
v
−
u
2
)
2
−
t
2
−
2
t
v
−
r
1
2
(
u
2
−
2
v
)
+
2
u
(
v
−
t
)
r
1
=
r
1
4
+
(
v
+
t
−
u
2
)
r
1
2
+
(
v
−
t
)
r
1
2
+
2
u
(
v
−
t
)
r
1
+
(
t
+
v
−
u
2
)
2
−
t
2
−
2
t
v
=
r
1
4
+
(
v
+
t
−
u
2
)
r
1
2
+
u
(
v
−
t
)
r
1
+
t
v
+
(
v
−
t
)
r
1
2
+
u
(
v
−
t
)
r
1
+
(
v
−
t
)
t
+
(
t
+
v
−
u
2
)
2
−
4
t
v
=
p
2
−
4
r
\begin{aligned} r_1^4+(u^2-2t-r_1^2)(u^2-2v)+v^2+2t[(-u-r_1)u+u^2-2v]+2r_1uv&=\\ r_1^4+(u^2-2t)(u^2-2v)+v^2-r_1^2(u^2-2v)+2u(v-t)r_1-4tv&=\\ r_1^4+u^4-2(t+v)u^2+v^2+4tv-r_1^2(u^2-2v)+2u(v-t)r_1-4tv&=\\ r_1^4+(t+v-u^2)^2-t^2-2tv-r_1^2(u^2-2v)+2u(v-t)r_1&=\\ r_1^4+(v+t-u^2)r_1^2+(v-t)r_1^2+2u(v-t)r_1+(t+v-u^2)^2-t^2-2tv&=\\ r_1^4+(v+t-u^2)r_1^2+u(v-t)r_1+tv+(v-t)r_1^2+u(v-t)r_1+(v-t)t+(t+v-u^2)^2-4tv&=\\ p^2-4r \end{aligned}
r14+(u2−2t−r12)(u2−2v)+v2+2t[(−u−r1)u+u2−2v]+2r1uvr14+(u2−2t)(u2−2v)+v2−r12(u2−2v)+2u(v−t)r1−4tvr14+u4−2(t+v)u2+v2+4tv−r12(u2−2v)+2u(v−t)r1−4tvr14+(t+v−u2)2−t2−2tv−r12(u2−2v)+2u(v−t)r1r14+(v+t−u2)r12+(v−t)r12+2u(v−t)r1+(t+v−u2)2−t2−2tvr14+(v+t−u2)r12+u(v−t)r1+tv+(v−t)r12+u(v−t)r1+(v−t)t+(t+v−u2)2−4tvp2−4r======
(7)式也得到证明,下面证明等式(8)成立只需要证明
(
r
1
+
r
2
)
(
r
1
+
r
3
)
(
r
1
+
r
4
)
(r_1+r_2)(r_1+r_3)(r_1+r_4)
(r1+r2)(r1+r3)(r1+r4)等于
±
q
\pm q
±q就可以了
(
r
1
+
r
2
)
(
r
1
+
r
3
)
(
r
1
+
r
4
)
=
r
1
3
+
r
1
2
r
2
+
r
1
2
r
3
+
r
1
2
r
4
+
r
1
r
2
r
3
+
r
1
r
2
r
4
+
r
1
r
3
r
4
+
r
2
r
3
r
4
=
r
1
2
(
r
1
+
r
2
+
r
3
+
r
4
)
+
r
1
r
2
r
3
+
r
1
r
2
r
4
+
r
1
r
3
r
4
+
r
2
r
3
r
4
=
r
1
r
2
(
r
3
+
r
4
)
+
(
r
1
+
r
2
)
r
3
r
4
=
u
(
t
−
v
)
=
−
q
\begin{aligned} (r_1+r_2)(r_1+r_3)(r_1+r_4)&=\\ r_1^3+r_1^2r_2+r_1^2r_3+r_1^2r_4+r_1r_2r_3+r_1r_2r_4+r_1r_3r_4+r_2r_3r_4&=\\ r_1^2(r_1+r_2+r_3+r_4)+r_1r_2r_3+r_1r_2r_4+r_1r_3r_4+r_2r_3r_4&=\\ r_1r_2(r_3+r_4)+(r_1+r_2)r_3r_4&=\\ u(t-v)&=-q \end{aligned}
(r1+r2)(r1+r3)(r1+r4)r13+r12r2+r12r3+r12r4+r1r2r3+r1r2r4+r1r3r4+r2r3r4r12(r1+r2+r3+r4)+r1r2r3+r1r2r4+r1r3r4+r2r3r4r1r2(r3+r4)+(r1+r2)r3r4u(t−v)=====−q
现在(6)(7)(8)都得到了证明所以确定了它们是一元三次方程(4)的三个根,反过来如果已知(4)的三个根如何来确定(1)表达以及求
r
1
r_1
r1,
r
2
r_2
r2,
r
3
r_3
r3,
r
4
r_4
r4呢?首先,无论(*)中取
α
\alpha
α,
β
\beta
β,
γ
\gamma
γ次序如何,可以确定最终得出的解的集合是相同的。其次,由于
U
=
u
2
U=u^2
U=u2,从(3)式可以看出
u
=
U
u=\sqrt{U}
u=U与
u
=
−
U
u=-\sqrt{U}
u=−U只会交换(1)式中的t,v与s,u的值,令
r
1
+
r
2
=
α
r_1+r_2=\sqrt{\alpha}
r1+r2=α或使
r
1
+
r
2
=
−
α
r_1+r_2=-\sqrt{\alpha}
r1+r2=−α只是交换了两个分解式的次序,选择
r
1
+
r
2
=
α
r_1+r_2=\sqrt{\alpha}
r1+r2=α另外,
r
1
+
r
3
=
±
β
,
r
1
+
r
4
=
±
γ
r_1+r_3=\pm \sqrt{\beta},r_1+r_4=\pm \sqrt{\gamma}
r1+r3=±β,r1+r4=±γ有四种可能的选择,枚举并求出所有的解之后r1,r2,r3,r4的解的集合分成两组
{
r
1
,
r
2
,
r
3
,
r
4
}
\{r_1,r_2,r_3,r_4\}
{r1,r2,r3,r4}与
{
−
r
1
,
−
r
2
,
−
r
3
,
−
r
4
}
\{-r_1,-r_2,-r_3,-r_4\}
{−r1,−r2,−r3,−r4},但并不是所有的取值都满足(3),因为选取其中一组计算
r
1
r
2
=
[
α
−
(
β
+
γ
−
2
β
γ
)
]
/
4
=
[
2
α
−
(
α
+
β
+
γ
)
−
2
β
γ
]
/
4
=
p
+
α
2
−
β
γ
2
=
t
=
(
p
+
α
2
−
q
α
)
2
⇒
q
α
=
β
γ
\begin{aligned} r_1r_2=[\alpha-(\beta+\gamma-2\sqrt{\beta}\sqrt{\gamma})]/4= [2\alpha-(\alpha+\beta+\gamma)-2\sqrt{\beta}\sqrt{\gamma}]/4&=\\ \frac{p+{\sqrt{\alpha}}^2-\sqrt{\beta}\sqrt{\gamma}}{2}=t&=\frac{(p+{\sqrt{\alpha}}^2-\frac{q}{\sqrt{\alpha}})}{2}\\ \Rightarrow \frac{q}{\sqrt{\alpha}} = \sqrt{\beta}\sqrt{\gamma} \end{aligned}
r1r2=[α−(β+γ−2βγ)]/4=[2α−(α+β+γ)−2βγ]/42p+α2−βγ=t⇒αq=βγ==2(p+α2−αq)
当满足
q
α
=
β
γ
\frac{q}{\sqrt{\alpha}} = \sqrt{\beta}\sqrt{\gamma}
αq=βγ条件时解集合表示为
{
r
1
,
r
2
,
r
3
,
r
4
}
\{r_1,r_2,r_3,r_4\}
{r1,r2,r3,r4},选取其中一种情形计算具体的r1,r2,r3,r4例如
(10)
r
1
+
r
2
+
r
3
+
r
4
=
0
r
1
+
r
2
=
α
r
1
+
r
3
=
β
r
1
+
r
4
=
γ
\begin{aligned} r_1+r_2+r_3+r_4=0 \\ r_1+r_2=\sqrt{\alpha}\\ r_1+r_3=\sqrt{\beta} \\ r_1+r4=\sqrt{\gamma}\tag{10} \end{aligned}
r1+r2+r3+r4=0r1+r2=αr1+r3=βr1+r4=γ(10)
根据(10)式解出的方程组的解是
(2)
r
1
=
α
+
β
+
γ
2
r
2
=
α
−
β
−
γ
2
r
3
=
−
α
+
β
−
γ
2
r
4
=
−
α
−
β
+
γ
2
\begin{aligned} r_1&=\frac{\sqrt{\alpha}+\sqrt{\beta}+\sqrt{\gamma}}{2} \\ r_2&=\frac{\sqrt{\alpha}-\sqrt{\beta}-\sqrt{\gamma}}{2} \\ r_3&=\frac{-\sqrt{\alpha}+\sqrt{\beta}-\sqrt{\gamma}}{2} \\ r_4&=\frac{-\sqrt{\alpha}-\sqrt{\beta}+\sqrt{\gamma}}{2}\tag{2} \end{aligned}
r1r2r3r4=2α+β+γ=2α−β−γ=2−α+β−γ=2−α−β+γ(2)
上式可以看到四次方程每一个解都使用三次方程的解的根表示(根与根之间也存在关系),显然对于每一个u四次方程的解集都是相同的。
请参考 https://en.wikipedia.org/wiki/Quartic_function
相关推荐
03-27
11-03
1万+

“相关推荐”对你有帮助么?
-
非常没帮助
-
没帮助
-
一般
-
有帮助
-
非常有帮助
提交
评论




查看更多评论

打赏作者
¥2
¥4
¥6
¥10
¥20
输入1-500的整数



