PTA基础编程集7-18 二分法求多项式单根 (20分)c++

本文介绍了如何运用二分法求解3阶多项式f(x)=a3x3+a2x2+a1x+a0在特定区间[a, b]内的唯一根。程序接收多项式系数及区间端点作为输入,并输出精确到小数点后两位的根。" 11779851,1451598,非递归算法实现二叉树深度计算,"['数据结构', '算法', '二叉树']

7-18 二分法求多项式单根 (20分)

二分法求函数根的原理为:如果连续函数f(x)在区间[a,b]的两个端点取值异号,即f(a)f(b)<0,则它在这个区间内至少存在1个根r,即f®=0。

二分法的步骤为:

检查区间长度,如果小于给定阈值,则停止,输出区间中点(a+b)/2;否则
如果f(a)f(b)<0,则计算中点的值f((a+b)/2);
如果f((a+b)/2)正好为0,则(a+b)/2就是要求的根;否则
如果f((a+b)/2)与f(a)同号,则说明根在区间[(a+b)/2,b],令a=(a+b)/2,重复循环;
如果f((a+b)/2)与f(b)同号,则说明根在区间[a,(a+b)/2],令b=(a+b)/2,重复循环。

本题目要求编写程序,计算给定3阶多项式f(x)=a​3​​x​3​​+a​2​​x​2​​+a​1​​x+a​0​​在给定区间[a,b]内的根。
输入格式:

输入在第1行中顺序给出多项式的4个系数a​3​​、a​2​​、a​1​​、a​0​​,在第2行中顺序给出区间端点a和b。题目保证多项式在给定区间内存在唯一单根。
输出格式:

在一行中输出该多项式在该区间内的根,精确到小数点后2位。 输入样例:

3 -1 -3 1
-0.5 0.5

#include<iostream>
#include<iomanip>
#include<cmath>

using namespace std;
double a3,a2,a1,a0;
//计算函数f(x)的值
double f(double x){
    return a3*pow(x,3)+a2*pow(x,2)+a1*x+a0;
}
//主函数
int main(void){
    double a,b,x;
    cin>>a3>>a2>>a1>>a0;

    cin>>a>>b;
    
    double left=f(a);//初始区间左值
    double right=f(b);//初始区间右值

    if(left==0)x=a;//区间端点函数值为0的情况
    else if(right==0)x=b;
    else if(left*right<0)//二分法
        for(;;){
            if(b-a<0.001){x=(a+b)/2;break;}//检测阈值
            
            double middle=f((a+b)/2);
            if(middle==0){x=(a+b)/2;break;}
            else if(middle*left<0){right=middle;b=(a+b)/2;}
            else if(middle*right<0){left=middle;a=(a+b)/2;}
        }

    cout<<setiosflags(ios::fixed)<<setprecision(2)<<x<<endl;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值