假设
我们要求解一个方程 A X = 0 AX=0 AX=0
其中,A是一个 n ∗ m n*m n∗m的矩阵,X是一个 m ∗ 1 m*1 m∗1的向量
一般情况下,n>>m,这就是一个超定方程了,理论上无解,但是我们可以求得最小二乘意义下的解
求解过程
m i n ∣ ∣ A X ∣ ∣ 2 2 min||AX||^2_2 min∣∣AX∣∣22
∣ ∣ A X ∣ ∣ 2 2 = ( A X ) T ( A X ) = X T A T A X ||AX||^2_2=(AX)^T(AX)=X^TA^TAX ∣∣AX∣∣22=(AX)T(AX)=XTATAX
此时令 B = A T A B=A^TA B=ATA,并且设B的特征值以及特征向量为 λ i , b i ⃗ \lambda_i,\vec{b_i} λi,bi

本文介绍了如何使用最小二乘法解决超定方程AX=0的问题。当n远大于m时,方程无解,但可以找到最小二乘意义下的解。通过求解过程,分析了矩阵B=ATA的特征值和特征向量,证明了解的形式为X=bm,其中bm是B的最大特征值对应的特征向量。
最低0.47元/天 解锁文章
2955

被折叠的 条评论
为什么被折叠?



