特征工程学习,19项实践Tips!代码已开源!

随着我们在机器学习、数据建模、数据挖掘分析这条发展路上越走越远,其实越会感觉到特征工程的重要性,平时我们在很多地方都会看到一些很好的特征工程技巧,但是都会是一个完整项目去阅读,虽然说这样子也可以学习挖掘思路,但有的时候浓缩的技巧总结也是十分重要!

GitHub上有一个专门针对特征工程技巧的“锦囊”,叫做《Tips-of-Feature-engineering》,作者把网路上、书本上的一些特征工程的项目,抽取其中的挖掘技巧,并把这些小技巧打包成一个又一个的小锦囊,供大家去检索并且学习,还蛮不错的!

项目地址为:

https://github.com/Pysamlam/Tips-of-Feature-engineering

大家可以先看看目前更新到的内容明细:

项目目前更新到19节,一般来说是每天一更新,每一节都会有配套的数据集以及代码,下面我们拿几个“锦囊”来看一下!

Tip8:怎么把几个图表一起在同一张图上显示?

这里是使用泰坦尼克号的数据集,前期我们做EDA的时候需要探查数据的分布,从而发现其中的规律,这一节的技巧就是教我们如何画一些常见的图形,同时显示在同一张图上。

关键代码

import matplotlib.pyplot as plt

# 设置figure_size尺寸
plt.rcParams['figure.figsize'] = (8.0, 6.0)

fig = plt.figure()

# 设定图表颜色
fig.set(alpha=0.2)

# 第一张小图
plt.subplot2grid((2,3),(0,0))
data_train['Survived'].value_counts().plot(kind='bar')
plt.ylabel(u"人数")
plt.title(u"船员获救情况 (1为获救)")

# 第二张小图
plt.subplot2grid((2,3),(0,1))
data_train['Pclass'].value_counts().plot(kind="bar")
plt.ylabel(u"人数")
plt.title(u"乘客等级分布")

# 第三张小图
plt.subplot2grid((2,3),(0,2))
plt.scatter(data_train['Survived'], data_train['Age'])
plt.ylabel(u"年龄")
plt.grid(b=True, which='major', axis='y')
plt.title(u"按年龄看获救分布 (1为获救)")

# 第四张小图,分布图
plt.subplot2grid((2,3),(1,0), colspan=2)
data_train.Age[data_train.Pclass == 1].plot(kind='kde')
data_train.Age[data_train.Pclass == 2].plot(kind='kde')
data_train.Age[data_train.Pclass == 3].plot(kind='kde')
plt.xlabel(u"年龄")
plt.ylabel(u"密度")
plt.title(u"各等级的乘客年龄分布")
plt.legend((u'头等舱', u'2等舱',u'3等舱'),loc='best')

# 第五张小图
plt.subplot2grid((2,3),(1,2))
data_train.Embarked.value_counts().plot(kind='bar')
plt.title(u"各登船口岸上船人数")
plt.ylabel(u"人数")
plt.show()

我们从上面的可视化操作结果可以看出,其实可以看出一些规律,比如说生还的几率比死亡的要大,然后获救的人在年龄上区别不大,然后就是有钱人(坐头等舱的)的年龄会偏大等。

Tip15:如何使用sklearn的多项式来衍生更多的变量?

关于这种衍生变量的方式,理论其实大家应该很早也都听说过了,但是如何在Python里实现,也就是今天在这里分享给大家,其实也很简单,就是调用sklearnPolynomialFeatures方法,具体大家可以看看下面的demo。

这里使用一个人体加速度数据集,也就是记录一个人在做不同动作时候,在不同方向上的加速度,分别有3个方向,命名为x、y、z。

关键代码

# 扩展数值特征
from sklearn.preprocessing import PolynomialFeatures

x = df[['x','y','z']]
y = df['activity']

poly = PolynomialFeatures(degree=2, include_bias=False, interaction_only=False)

x_poly = poly.fit_transform(x)
pd.DataFrame(x_poly, columns=poly.get_feature_names()).head()

就这样子简单的去调用,就可以生成了很多的新变量了。

Tip17:如何把分布修正为类正态分布?

今天我们用的是一个新的数据集,也是在kaggle上的一个比赛,大家可以先去下载一下:

下载地址:

https://www.kaggle.com/c/house-prices-advanced-regression-techniques/data

import pandas as pd
import numpy as np
# Plots
import seaborn as sns
import matplotlib.pyplot as plt

# 读取数据集
train = pd.read_csv('./data/house-prices-advanced-regression-techniques/train.csv')
train.head()

首先这个是一个价格预测的题目,在开始前我们需要看看分布情况,可以调用以下的方法来进行绘制:

sns.set_style("white")
sns.set_color_codes(palette='deep')
f, ax = plt.subplots(figsize=(8, 7))
#Check the new distribution
sns.distplot(train['SalePrice'], color="b");
ax.xaxis.grid(False)
ax.set(ylabel="Frequency")
ax.set(xlabel="SalePrice")
ax.set(title="SalePrice distribution")
sns.despine(trim=True, left=True)
plt.show()

我们从结果可以看出,销售价格是右偏,而大多数机器学习模型都不能很好地处理非正态分布数据,所以我们可以应用log(1+x)转换来进行修正。那么具体我们可以怎么用Python代码实现呢?

# log(1+x) 转换
train["SalePrice_log"] = np.log1p(train["SalePrice"])

sns.set_style("white")
sns.set_color_codes(palette='deep')
f, ax = plt.subplots(figsize=(8, 7))

sns.distplot(train['SalePrice_log'] , fit=norm, color="b");

# 得到正态分布的参数
(mu, sigma) = norm.fit(train['SalePrice_log'])

plt.legend(['Normal dist. ($\mu=$ {:.2f} and $\sigma=$ {:.2f} )'.format(mu, sigma)],
            loc='best')
ax.xaxis.grid(False)
ax.set(ylabel="Frequency")
ax.set(xlabel="SalePrice")
ax.set(title="SalePrice distribution")
sns.despine(trim=True, left=True)

plt.show()

目前这个项目更新到了19节,但是会持续不断更新“锦囊”,欢迎大家来进行star哦!

项目地址为:

https://github.com/Pysamlam/Tips-of-Feature-engineering

AI学习路线和优质资源,在后台回复"AI"获取

发布了255 篇原创文章 · 获赞 360 · 访问量 32万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览