「雅礼集训 2017 Day7」

蛐蛐国的修墙方案

loj6043

从 i 向 p[i] 连边,因为 p 为 1~n 的排列,所以所有点的出度入度皆为 1

数据保证有解且 p[i] != i,所以建成的图必为多个互不相交的环

考虑到环内各点相互限制,枚举任一条边是否选择即可确定整个环的状态

优先将左括号放在前面,这样更容易得到合法的序列

暴搜

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
using namespace std;
#define N 105

int n, p[N], sel[N];//sel为 1/2 分别代表 左/右 括号 
bool f[N], vis[N];
vector<int> to[N];

void dfs(int x, int cnt)//cnt记录括号的配对情况,左括号 +1 右括号 -1 
{
    if(cnt < 0 || cnt > n - x + 1) return;
    if(x > n)
    {
        if(cnt != 0) return;//左右括号个数不等 
        for(int i = 1; i <= n; i++)
            if(sel[i] == 1) printf("("); else printf(")");
        exit(0); 
    }
    if(sel[x]) {dfs(x + 1, cnt + (sel[x] == 1? 1 : -1));return;}
    for(int i = 1; i <= 2; i++)//枚举当前位置的括号选择情况 
    {
        int cur = x, now = i, len = 0;
        do
        {
            len++;
            sel[cur] = now;
            cur = p[cur];
            now = 3 - now;
        }while(cur != x);
        if(len == 2) {dfs(x + 1, cnt + 1); return;}//大小为2的环显然确定 
        dfs(x + 1, cnt + (sel[x] == 1? 1 : -1));
        do
        {
            sel[cur] = 0;
            cur = p[cur];
        }while(cur != x);
    }
}

int main()
{
    freopen("C.in", "r", stdin);
    freopen("C.out", "w", stdout);
    
    scanf("%d", &n);
    for(int i = 1; i <= n; i++) scanf("%d", &p[i]);
    dfs(1, 0);
    return 0;
}

转载于:https://www.cnblogs.com/XYZinc/p/8665877.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值