# How many integers can you find

Time Limit: 12000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 5345    Accepted Submission(s): 1515

Problem Description
Now you get a number N, and a M-integers set, you should find out how many integers which are small than N, that they can divided exactly by any integers in the set. For example, N=12, and M-integer set is {2,3}, so there is another set {2,3,4,6,8,9,10}, all the integers of the set can be divided exactly by 2 or 3. As a result, you just output the number 7.

Input
There are a lot of cases. For each case, the first line contains two integers N and M. The follow line contains the M integers, and all of them are different from each other. 0<N<2^31,0<M<=10, and the M integer are non-negative and won’t exceed 20.

Output
For each case, output the number.

Sample Input
12 2 2 3

Sample Output
7

Author
wangye

Source

Recommend
wangye

容斥原理是早学过，但从没想过功能如此强大，最近老是碰到。这道题，题意是求给定的集合中，在1~（n-1）范围内，能找到多少个数，为集合中任一数的倍数。其实也就是求这些数倍数集合的并。以两个为例，根据容斥原理，结果等于集合A∪集合B-集合A∩B。A∩B，即为既是A的倍数，又是B的倍数，那么就是A,B最小公倍数的倍数。模拟二进制表示，某位取或不取，最后容斥一下，就得到结果了。神坑的是，很容易看错，是会有0出现的，需要排除掉。

#include <iostream>
#include <cstring>
using namespace std;
int one_amount[1050];
int refl[1050][10];
void cal()
{
memset(refl,0,sizeof(refl));
int cnt=0,temp;
for(int i=0;i<1024;i++)
{
temp=i;
one_amount[i]=cnt=0;
while(temp)
{
if(temp%2)
{
one_amount[i]++;
refl[i][cnt]=1;
}
cnt++;
temp/=2;
}
}
}
long long gcd(long long a,long long b)
{
if(a==0)return b;
else return gcd(b%a,a);
}
int main()
{
int m,x;
unsigned long long n,store[12],tmp,ans,temp;
cal();
while(cin>>n>>m)
{
ans=0;
int y=m,z=0;
while(y--)
{
cin>>store[z];
if(store[z]==0)
{
m--;
continue;
}
else z++;
}
x=1;
for(int i=0;i<m;i++)
x*=2;
for(int i=1;i<x;i++)
{
tmp=1;
for(int j=0;j<m;j++)
{
if(refl[i][j])
{
temp=gcd(tmp,store[j]);
tmp=tmp*store[j]/temp;
}
}
if(one_amount[i]%2)
ans+=(n-1)/tmp;
else
ans-=(n-1)/tmp;
}
cout<<ans<<endl;
}
return 0;
}

#### HDU 1796 How many integers can you find

2015-08-16 10:00:02

#### HDU 1796 容斥原理 How many integers can you find

2013-09-13 01:49:20

#### HDU 1796 How many integers can you find(容斥原理)

2015-01-08 11:13:24

#### hdu 1796 How many integers can you find(容斥原理)

2016-10-26 14:43:14

#### HDOJ 1796 How many integers can you find 容斥原理

2015-03-27 17:43:34

#### HDU 1796 How many integers can you find (容斥定理 + 二进制)

2015-08-15 09:25:59

#### hdu 2266 How Many Equations Can You Find

2015-07-06 13:42:49

#### HDU 1796 How many integers can you find（组合数学-容斥原理）

2014-07-29 16:22:48

#### HDU 2138 How many prime numbers【素数判断，卡时间！！】

2016-01-15 18:07:57

#### 【2017广西邀请赛】hdu 6182 A Math Problem

2017-09-06 08:13:04