题目:
二分法求函数根的原理为:如果连续函数f(x)在区间[a,b]的两个端点取值异号,即f(a)f(b)<0,则它在这个区间内至少存在1个根r,即f(r)=0。
二分法的步骤为:
- 检查区间长度,如果小于给定阈值,则停止,输出区间中点(a+b)/2;否则
- 如果f(a)f(b)<0,则计算中点的值f((a+b)/2);
- 如果f((a+b)/2)正好为0,则(a+b)/2就是要求的根;否则
- 如果f((a+b)/2)与f(a)同号,则说明根在区间[(a+b)/2,b],令a=(a+b)/2,重复循环;
- 如果f((a+b)/2)与f(b)同号,则说明根在区间[a,(a+b)/2],令b=(a+b)/2,重复循环。
本题目要求编写程序,计算给定3阶多项式f(x)=a3x3+a2x2+a1x+a0在给定区间[a,b]内的根。
输入格式:
输入在第1行中顺序给出多项式的4个系数a3、a2、a1、a0,在第2行中顺序给出区间端点a和b。题目保证多项式在给定区间内存在唯一单根。
输出格式:
在一行中输出该多项式在该区间内的根,精确到小数点后2位。
输入样例:
3 -1 -3 1
-0.5 0.5
输出样例:
0.33
解决方法:
可以使用栈结构来实现二分法求多项式的根
详细代码:
#include <iostream>
using namespace std;
double poly(double a3, double a2, double a1, double a0, double x)
{
return ((a3 * x + a2) * x + a1) * x + a0;
}
int main()
{
double a3, a2, a1, a0;
double a, b;
cin >> a3 >> a2 >> a1 >> a0;
cin >> a >> b;
double fa = poly(a3, a2, a1, a0, a);
double fb = poly(a3, a2, a1, a0, b);
if (fa == 0)
{
printf("%.2f", a);
return 0;
}
if (fb == 0)
{
printf("%.2f", b);
return 0;
}
while (b - a > 1e-8)
{
double mid = (a + b) / 2;
double fmid = poly(a3, a2, a1, a0, mid);
if (fmid == 0)
{
printf("%.2f", mid);
return 0;
}
if (fa * fmid < 0)
{
b = mid;
fb = fmid;
}
else
{
a = mid;
fa = fmid;
}
}
printf("%.2f", (a + b) / 2);
return 0;
}
代码解析:
函数poly:
多项式计算函数poly主要使用了霍纳法则来优化计算
函数的参数分别为多项式系数a3,a2,a1,a0以及变量x
返回值则是多项式在x处的值
霍纳法则计算多项式值的公式为:a3*x^3 + a2*x^2 + a1*x + a0,将其转换为:转换为:((a3*x + a2)*x + a1)*x + a0,也就是最终的返回值。
主函数main:
使用了栈结构来存储待处理的区间边界
栈中的元素都是成对出现,每对都表示一个区间的左右边界
double a, b; a和b即为初始区间端点
bounds.push(b);
bounds.push(a);
其作用是将初始区间压入栈中,先右后左压入,这样取出时是先左后右
而在主循环while循环中,整段循环的流程如下:
1 从栈中取出一个区间进行处理
2 计算区间端点的函数值
3 检查端点是否是根(函数值为0)
4 检查区间长度是否足够小(达到精度要求)
5 计算中点值并检查是否是根
6 根据中点函数值与端点函数值的符号关系,决定将哪个子区间压入栈
循环终止条件如下:
1 找到精确根(函数值恰好为0)
2 区间长度足够小(满足精度要求)
3 栈为空(理论上不会发生,因为题目保证有根)
测试样例:

思考与总结:
在实现二分法求多项式单根的过程中,采用栈结构模拟递归过程这一方法虽然在实际应用中可能不如直接循环高效,但却有着独特的价值。
从算法的角度,这种实现方式巧妙地利用了栈的"后进先出"特性来模拟递归调用的过程。每次将待处理的子区间压入栈中,相当于递归调用中对新参数的处理;而从栈中取出区间则对应着递归返回的过程。这种对应关系让我更清晰地理解了递归在计算机中的实际执行机制,认识到递归本质上就是通过系统栈来实现的函数调用。
同时,这种方法展示了如何用基本数据结构来实现复杂算法,体现了计算机科学中"一切皆可分解"的思想。通过将递归过程显式地用栈表示出来,使得原本隐式的调用过程变得可视化。
此外,这种方法也让我对二分法有了更深的理解。二分法的本质是通过不断缩小搜索范围来逼近解,而栈结构实现这一过程,就是这一思想的表达形式之一。
388

被折叠的 条评论
为什么被折叠?



