1.关于with
with 是python中上下文管理器,简单理解,当要进行固定的进入,返回操作时,可以将对应需要的操作,放在with所需要的语句中。比如文件的写入(需要打开关闭文件)等。
以下为一个文件写入使用with的例子。
with open (filename,'w') as sh:
sh.write("#!/bin/bash\n")
sh.write("#$ -N "+'IC'+altas+str(patientNumber)+altas+'\n')
sh.write("#$ -o "+pathSh+altas+'log.log\n')
sh.write("#$ -e "+pathSh+altas+'err.log\n')
sh.write('source ~/.bashrc\n')
sh.write('. "/home/kjsun/anaconda3/etc/profile.d/conda.sh"\n')
sh.write('conda activate python27\n')
sh.write('echo "to python"\n')
sh.write('echo "finish"\n')
sh.close()
with 后部分,可以将 with 后的语句运行,将其返回结果给到 as 后的变量(sh),之后的代码块对 close 进行操作。
2.关于with torch.no_grad():
在使用 pytorch 时,并不是所有的操作都需要进行计算图的生成(计算过程的构建,以便梯度反向传播等操作)。而对于 tensor 的计算操作,默认是要进行计算图的构建的,在这种情况下,可以使用 with torch.no_grad():,强制之后的内容不进行计算图构建。
以下分别为使用和不使用的情况:
(1)使用with torch.no_grad():
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (
100 * correct / total))
print(outputs)
运行结果:
Accuracy of the network on the 10000 test images: 55 %
tensor([[-2.9141, -3.8210, 2.1426, 3.0883, 2.6363, 2.6878, 2.8766, 0.3396,
-4.7505, -3.8502],
[-1.4012, -4.5747, 1.8557, 3.8178, 1.1430, 3.9522, -0.4563, 1.2740,
-3.7763, -3.3633],
[ 1.3090, 0.1812, 0.4852, 0.1315, 0.5297, -0.3215, -2.0045, 1.0426,
-3.2699, -0.5084],
[-0.5357, -1.9851, -0.2835, -0.3110, 2.6453, 0.7452, -1.4148, 5.6919,
-6.3235, -1.6220]])
此时的 outputs 没有属性。
而对应的不使用的情况
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (
100 * correct / total))
print(outputs)
结果如下:
Accuracy of the network on the 10000 test images: 55 %
tensor([[-2.9141, -3.8210, 2.1426, 3.0883, 2.6363, 2.6878, 2.8766, 0.3396,
-4.7505, -3.8502],
[-1.4012, -4.5747, 1.8557, 3.8178, 1.1430, 3.9522, -0.4563, 1.2740,
-3.7763, -3.3633],
[ 1.3090, 0.1812, 0.4852, 0.1315, 0.5297, -0.3215, -2.0045, 1.0426,
-3.2699, -0.5084],
[-0.5357, -1.9851, -0.2835, -0.3110, 2.6453, 0.7452, -1.4148, 5.6919,
-6.3235, -1.6220]], grad_fn=<AddmmBackward>)
可以看到,此时有 grad_fn= 属性,表示,计算的结果在一计算图当中,可以进行梯度反传等操作。但是,两者计算的结果实际上是没有区别的。