Linux系统基本概念 本文记录一些linux系统中涉及的一些基本概念: - 一.应用程序管理器:apt-get,yum,pip,conda,homebrew(mac OS X系统) - 二.版本控制工具:git,cvs,SVN,Github - 三.远程连接相关:虚拟网络控制台VNC,安全协议SSH - 四.Linux系统上的图形显示界面。一、应用程序管理器 apt-get和yum是linux系统不同版
Two-Stream RNN/CNN for Action Recognition in 3D Videos-阅读笔记 Two-Stream RNN/CNN for Action Recognition in 3D Videos-阅读笔记在youtube上看到这篇论文的视频,做的效果还不错,简单阅读一下: - 视频链接:https://www.youtube.com/watch?v=G0PXKCEgIoA. - 论文链接:https://arxiv.org/abs/1703.09783 - 该论文在NTU RG
KNN 原文地址:http://blog.csdn.net/aladdina/article/details/4141127K Nearest Neighbor算法又叫KNN算法,这个算法是机器学习里面一个比较经典的算法, 总体来说KNN算法是相对比较容易理解的算法。其中的K表示最接近自己的K个数据样本。KNN算法和K-Means算法不同的是,K-Means算法用来聚类,用来判断哪些东
Leetcode --9 原题链接:https://leetcode.com/problems/palindrome-number/#/description题目:Determine whether an integer is a palindrome. Do this without extra space.Some hints:Could negative integers be palindromes
数据结构的堆栈与内存中堆栈的区别 随笔 - 20 文章 - 0 评论 - 14内存堆和栈的区别原文: http://student.csdn.net/link.php?url=http://www.top-e.org%2Fjiaoshi%2Fhtml%2F427.html在计算机领域,堆栈是一个不容忽视的概念,我们编写的C语言程序基本上都要用到。但对于很多的初
Leetcode--8 原题链接:https://leetcode.com/problems/string-to-integer-atoi/#/description题目:Implement atoi to convert a string to an integer.Hint: Carefully consider all possible input cases. If you want a
苹果笔记本设置MAC地址和ip地址 由于学校给每个实验室分配固定的IP和上网帐号,用苹果笔记本通过转街头链接网线需要设置接口的MAC地址、ip地址等。下面一一详细介绍:一、设置苹果笔记本(mac pro)的 MAC地址。第一步:首先先在终端输入如下指令,查看机器现有的MAC地址:MacBook-Pro:~ wxw$ networksetup -listallhardwareports输出:Hardware Por
caffe中各层定义 Vision LayersConvolutionPoolingLocal Response Normalization LRNim2colLoss LayersSoftmaxSum-of-Squares EuclideanHinge MarginSigmoid Cross-EntropyInfogainAccuracy and Top-kActivation Neuron
caffe中lstm的实现以及lstmlayer的理解 本文地址:http://blog.csdn.net/mounty_fsc/article/details/53114698本文内容:本文描述了Caffe中实现LSTM网络的思路以及LSTM网络层的接口使用方法。本文描述了论文《Long-term recurrent convolutional networks for visual recognition and descrip
openmp与openmpi区别 。openmp比较简单,修改现有的大段代码也容易。基本上openmp只要在已有程序基础上根据需要加并行语句即可。而mpi有时甚至需要从基本设计思路上重写整个程序,调试也困难得多,涉及到局域网通信这一不确定的因素。不过,openmp虽然简单却只能用于单机多CPU/多核并行,mpi才是用于多主机超级计算机集群的强悍工具,当然复杂。 (1)MPI=message passing inte
LSTM 循环神经网络(RNN)点击打开链接人们的每次思考并不都是从零开始的。比如说你在阅读这篇文章时,你基于对前面的文字的理解来理解你目前阅读到的文字,而不是每读到一个文字时,都抛弃掉前面的思考,从头开始。你的记忆是有持久性的。传统的神经网络并不能如此,这似乎是一个主要的缺点。例如,假设你在看一场电影,你想对电影里的每一个场景进行分类。传统的神经网络不能够基于前面的已分类场景来推断接下来的
协方差矩阵 一、统计学的基本概念统计学里最基本的概念就是样本的均值、方差、标准差。首先,我们给定一个含有n个样本的集合,下面给出这些概念的公式描述:均值:标准差:方差:均值描述的是样本集合的中间点,它告诉我们的信息是有限的,而标准差给我们描述的是样本集合的各个样本点到均值的距离之平均。以这两个集合为例,[0, 8, 12, 20]和[8, 9, 11, 12],
mAP介绍 作者:水哥链接:https://www.zhihu.com/question/41540197/answer/91698989来源:知乎著作权归作者所有,转载请联系作者获得授权。在图像中,尤其是分类问题中应用AP,是一种评价ranking方式好不好的指标:举例来说,我有一个两类分类问题,分别5个样本,如果这个分类器性能达到完美的话,ranking结果应该是+1,+1,+
数据处理-Batch Normalization 今年过年之前,MSRA和Google相继在ImagenNet图像识别数据集上报告他们的效果超越了人类水平,下面将分两期介绍两者的算法细节。 这次先讲Google的这篇《Batch Normalization Accelerating Deep Network Training by Reducing Internal Covariate Shift》,主要是因为这里面的思想比较有普适性,
激活函数 深度学习中的激活函数导引我爱机器学习(52ml.net)2016年8月29日0作者:程程链接:https://zhuanlan.zhihu.com/p/22142013来源:知乎著作权归作者所有,已联系作者获得转载许可。深度学习大讲堂致力于推送人工智能,深度学习方面的最新技术,产品以及活动。请关注我们的知乎专栏!摘要近年来,深度学习在计算机视觉领
深度神经网络结构以及Pre-Training的理解 深度神经网络结构以及Pre-Training的理解Logistic回归、传统多层神经网络1.1 线性回归、线性神经网络、Logistic/Softmax回归线性回归是用于数据拟合的常规手段,其任务是优化目标函数:h(θ)=θ+θ1x1+θ2x2+....θnxnh(θ)=θ+θ1x1+θ2x2+....θnxn线性回归的求解法通常为两种:①解优化多元一次
正则化方法:防止过拟合,提高泛化能力 正则化方法:防止过拟合,提高泛化能力 在机器学习各种模型训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合)。其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在training data上的error渐渐减小,但是在验证集上的error却反而渐渐增大——因为训练出来的网络过拟合了训练集,对训练集外的数据却不work。
深度学习中防止过拟合的方法 在深度学习中,当数据量不够大时候,常常采用下面4中方法:1. 人工增加训练集的大小. 通过平移, 翻转, 加噪声等方法从已有数据中创造出一批"新"的数据.也就是Data Augmentation2. Regularization. 数据量比较小会导致模型过拟合, 使得训练误差很小而测试误差特别大. 通过在Loss Function 后面加上正则项可以抑制过拟合的产生. 缺点是引