第一章 命题逻辑 1.7 推理理论

本文深入探讨推理理论,包括推理的形式结构、前提与结论的概念,以及判断推论正确性的三种方法:真值表法、等值演算法和主析取(主合取)范式法。同时介绍了推理定律和推理规则,并提供了构造证明法、附加前提证明法、归谬证明法和归结证明法等判断推理正确性的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.6 组合电路老师应该不会讲(咱们上一届就没讲),所以咱们直接跳过。

1.7 推理理论

定义: 称蕴含式(A1A_1A1 ∧\wedge A2A_2A2 ∧\wedge ⋯\cdots ∧\wedge AnA_nAn→\rightarrow B 为推理的形式结构\red{推理的形式结构 }A1A_1A1 , A2A_2A2, ⋯\cdots ,AnA_nAn推理的前提\red{推理的前提}, B为推理的结论\red{推理的结论}。若(A1A_1A1 ∧\wedge A2A_2A2 ∧\wedge ⋯\cdots ∧\wedge AnA_nAn→\rightarrow B 为重言式,则称从前提A1A_1A1 ∧\wedge A2A_2A2 ∧\wedge ⋯\cdots ∧\wedge AnA_nAn 推出结论B的推论正确,B 是A1A_1A1 , A2A_2A2, ⋯\cdots ,AnA_nAn 的有效结论或逻辑结论。记作:

A1A_1A1 ∧\wedge A2A_2A2 ∧\wedge ⋯\cdots ∧\wedge AnA_nAn⇒\Rightarrow B

A1A_1A1 , A2A_2A2, ⋯\cdots ,AnA_nAn ⇒\Rightarrow B

否则称推理不正确,或B不是前提A1A_1A1 , A2A_2A2, ⋯\cdots ,AnA_nAn的有效结论。

辨析:在传统数学中定理的证明均是由前提(已知条件,全是真命题)推结论(亦全是真命题),这样的结论称为合法结论。数理逻辑有所不同,它着重研究的是推理过程,这种过程称为演绎或形式证明。对于作为前提和结论的命题并不一定要求它们都是真命题,这样的结论称为有效结论。

注意
由定义可知,推论是否正确取决于蕴含式是否为重言式。所以根据之前所学的知识我们已经有三种方法去判断推论是否正确:

  1. 真值表法
  2. 等值演算法
  3. 主析取(主合取)范式法

eg:
1.真值表法
法1
2.等值演算法
法2
根据这道例题就很容易明白我之前在辨析中讲的了。这里我们着重研究推理过程,不必在意前提(马会飞)和结论(牛不吃草)是否正确

3.主析取(主合区)范式法
法3
接下来就是本节的重点了!
为了更快速的判断推理是否正确,我们引入了一些推理定律和推理规则,如下:
推理定律
这些都是最基本的推理公式,需要大家记下来。以后可以直接用,不必每次都展开化简。这里除了3,4,5其他都很好记的,给大家分享一下我对3,4,5的记法。 我们知道这些式子中前件是充分条件(小),后件是必要条件(大),我们要由小充分去推大必要,也就是要将它成真的范围放大,我们发现前件是由两个命题变元A,B组成的。我们将 “∧\wedge”左右较简单的一项取真,这样前件真假就只由一个命题变元所决定,自然成真的范围就扩大了。剩下的命题变元取真或取假就是我们所推出来的后件了。
eg:
3.要让((AAA →\rightarrowBBB∧\wedge AAA)成真我们先让 AAA成真,这样将它成真的范围放大。(AAA →\rightarrowBBB)中AAA是真,所以BBB不能取假,否则(AAA →\rightarrowBBB)为假。故推出的后件为 BBB

4.要让((AAA →\rightarrowBBB∧\wedge ¬B¬B¬B)成真我们先让BBB为假,所以(AAA →\rightarrowBBB)中AAA也得为假。故我们推出后件¬A¬A¬A

5.要让((AAA ∨\veeBBB∧\wedge ¬B¬B¬B)为真我们先让BBB为假,所以(AAA ∨\veeBBB)中AAA为真。故我们推出的后件为AAA

推理规则1
推理规则2
有了上面的基础我们再给大家介绍一种方法

构造证明法:构造证明可以看作公式是序列,其中的每个公式都是按照事先规定的规则得到的,且需将所有的规则在公式后写明,该序列的最后一个公式正是所要证明的结论。

eg:
8
上述例题让我们在前提下用推理定律和推理规则一步步推出结论。我们可以先倒着想,我们要推qqq ,从前提中可知要推qqq就得知道ppp,想知道ppp就得知道rrr,想知道r就得知道sss,想知道sss就得知道tttttt已知。推理的时候将这个过程反过来即可。

再来:
9
10
再给大家介绍几种判断推理是否正确的方法:

附加前提证明法(cp规则):当推理的结论为蕴含式的时候,可以将其前件作为附加前提引用,只要能推出其后件,则原推理成立。

cp
由上述证明可知此证明法成立
例题:
cp例子

归谬证明法:将结论的否定式作为附加前提引入,公式序列的最后得一矛盾式,则原推理成立。

归谬法证明
由上述证明可知此法成立

例题:
14
15

归结证明法:可将前提中的析取式归结起来,例如:(ppp ∨\vee qqq)与(¬p¬p¬p ∨\vee rrr) 归结得(ppp ∨\vee rrr)作为新的前提

原因如下:
归结原因
例题:
17
18
19

例10

20
21

练习:

22
23

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值