DeepRoute Lab | 点云分割

点云分割是为每个点赋予语义标签,用于自动驾驶、机器人和AR/VR等领域,可解决去噪和地面检测等问题。文章介绍了点云分割的挑战,如点数过多、稀疏性和无序性,并探讨了几种经典方法,如PointNet和PointNet++,以及针对室外点云的KPConv和RandLA-Net。这些方法在捕捉局部和全局信息方面各有优缺点,其中,RandLA-Net通过随机采样和Local spatial encoding实现了高效处理大规模点云数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

​本次将会给大家带来一个简单的关于点云分割的survey分享首先什么是点云,点云是激光雷达产生的离散数据,具备稀疏性、无序性、尺度不变性等特性。

什么是点云分割,点云分割其实是为了给每个点打上语义标签,整个任务对于自动驾驶、机器人、AR\VR都特别重要,可以用来去噪、地面检测等等。

点云分割的挑战性

1. 点数过多,尤其是对于自动驾驶的场景,整体的点数可能超过10W;

2. 稀疏性,需要设计一系列的算法去应对点云的稀疏性,相比于图像数据,需要设计高效的算法去处理稀疏的点云数据;

3. 无序性。

一个好的点云网络应该能够考虑到这几个特性。

接下来,我会根据点云的表征方式给大家介绍一些经典的点云分割的paper。

首先根据点云的表征方式可以分为point-based,voxel-based, range-view-based,multi-representation based methods。当前基于transformer的方式我们暂时不介绍。

point-based的方法

1.PointNet: De

### 使用 CesiumLab 进行点云数据处理 CesiumLab 是一款专注于 Cesium 开源数字地球平台的免费数据处理工具集,提供了多种功能模块来支持地理空间数据分析与可视化[^1]。其中,点云数据处理是其核心功能之一。 #### 功能概述 CesiumLab 提供了一套完整的工具链用于点云数据的预处理、优化和服务发布。以下是主要的功能特点: - **点云分类**:通过内置算法对原始点云数据进行分类操作,区分地面点、植被点和其他特征点。 - **坐标系转换**:支持不同投影系统的点云数据转换,便于与其他地理信息系统 (GIS) 数据集成[^2]。 - **LOD 和包围盒生成**:自动计算并生成多细节层次 (Level of Detail, LOD),从而提升大规模点云数据加载效率;同时创建几何边界框以加速渲染性能[^3]。 - **格式转换**:能够将常见的点云文件格式(如 `.las`, `.laz`)转化为适合 WebGL 渲染引擎使用的三维瓦片标准 `3DTiles`. #### 示例教程 下面是一个简单的流程说明如何利用 CesiumLab点云数据执行基本的操作: ##### 步骤一: 导入点云数据 启动应用程序后,在界面左侧导航栏找到 “点云数据处理” 菜单项,并点击上传按钮导入本地存储的一个或多份 LAS/LAZ 文件。 ##### 步骤二: 配置参数选项 调整右侧属性面板中的各项配置项,比如分辨率设定、采样密度控制等。这些设置直接影响最终输出成果的质量和大小。 ##### 步骤三: 执行处理任务 确认无误之后按下运行键等待程序完成全部运算过程。期间可以实时查看进度条更新状态直至结束提示弹窗显示成功消息为止。 ##### 步骤四: 输出结果导出 最后一步是从目标位置获取经过加工后的产物——通常是以目录形式组织起来的一系列子文件夹及其内部包含的内容物,它们共同组成了符合规范要求的标准结构化表达方式以便于后续进一步应用部署或者分享传播给其他相关人员使用。 ```bash # 下载示例命令 wget https://example.com/path/to/samplePointCloud.las -O samplePointCloud.las ``` ```python from cesiumlab import PointCloudProcessor processor = PointCloudProcessor(input_file="samplePointCloud.las", output_dir="./output") processor.set_lod_levels([0.5, 1.0, 2.0]) # 设置LOD级别 processor.generate_bounding_boxes() # 创建包围盒 processor.export_to_3d_tiles() # 将点云转换为3DTiles格式 ``` 以上脚本展示了如何调用 Python API 来自动化上述手动步骤的过程^。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值