本次将会给大家带来一个简单的关于点云分割的survey分享。首先什么是点云,点云是激光雷达产生的离散数据,具备稀疏性、无序性、尺度不变性等特性。
什么是点云分割,点云分割其实是为了给每个点打上语义标签,整个任务对于自动驾驶、机器人、AR\VR都特别重要,可以用来去噪、地面检测等等。
点云分割的挑战性
1. 点数过多,尤其是对于自动驾驶的场景,整体的点数可能超过10W;
2. 稀疏性,需要设计一系列的算法去应对点云的稀疏性,相比于图像数据,需要设计高效的算法去处理稀疏的点云数据;
3. 无序性。
一个好的点云网络应该能够考虑到这几个特性。
接下来,我会根据点云的表征方式给大家介绍一些经典的点云分割的paper。
首先根据点云的表征方式可以分为point-based,voxel-based, range-view-based,multi-representation based methods。当前基于transformer的方式我们暂时不介绍。
point-based的方法
1.PointNet: De