[SDOI2009]Elaxia的路线,洛谷之提高历练地,较复杂图论II

原创 2018年04月15日 15:27:11

正题

      第四题:[SDOI2009]Elaxia的路线

      这道题好像很麻烦。。。

      首先我们可以知道,如果边(x,y,c)为x1到y1最短路路径上的一条边,那么它肯定满足

      d[x1][x]+d[y][y1]+c==d[x][y]       ||      d[x1][y]+d[x][y1]+c==d[x][y]

      那么知道了这个东西,我们就可以知道,当且仅当边U满足同时为x1到y1的最短路且为x2到y2的最短路时,U才为目标路径。

      我们跑四次最短路,我们就可以知道x1,y1,x2,y2到每个点的最短路。

      然后枚举每一条边判断是否满足条件即可。当然最后知道了目标路径之后还要跑一次最长路(dfs记忆化搜索即可)。

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<queue>
using namespace std;

int n,m;
struct edge{
	int x,y,next,c;
}s[3000010];
int first[1510];
int len=0;
bool tf[1510];
queue<int> f;
int qw[1510];
struct node{
	int x,dis[1510];
	void SPFA(){
		f.push(x);
		tf[x]=true;
		for(int i=1;i<=n;i++)
			dis[i]=1e9;
		dis[x]=0;
		while(!f.empty()){
			int xx=f.front();
			f.pop();
			tf[xx]=false;
			for(int i=first[xx];i!=0;i=s[i].next){
				int y=s[i].y;
				if(dis[y]>dis[xx]+s[i].c){
					dis[y]=dis[xx]+s[i].c;
					if(!tf[y]){
						tf[y]=true;
						f.push(y);
					}
				}
			}
		}
	}
}x1,y1,x2,y2;
struct new_edge{
	int y,next,c;
}p[3000010];

void ins(int x,int y,int c){
	len++;
	s[len].x=x;s[len].y=y;s[len].c=c;s[len].next=first[x];first[x]=len;
}

void inss(int x,int y,int c){
	len++;
	p[len].y=y;p[len].c=c;p[len].next=first[x];first[x]=len;
}

void dfs(int x){
	if(qw[x]!=0) return ;
	for(int i=first[x];i!=0;i=p[i].next){
		int y=p[i].y;
		dfs(y);
		qw[x]=max(qw[y]+p[i].c,qw[x]);
	}
}

int main(){
	scanf("%d %d",&n,&m);
	scanf("%d %d %d %d",&x1.x,&y1.x,&x2.x,&y2.x);
	for(int i=1;i<=m;i++){
		int x,y,c;
		scanf("%d %d %d",&x,&y,&c);
		ins(x,y,c);ins(y,x,c);
	}
	x1.SPFA();y1.SPFA();x2.SPFA();y2.SPFA();
	memset(first,0,sizeof(first));
	int qwe=len;
	len=0;
	for(int i=1;i<=qwe;i++){
		int x=s[i].x,y=s[i].y;
		if(x1.dis[x]+y1.dis[y]+s[i].c==x1.dis[y1.x] && x2.dis[x]+y2.dis[y]+s[i].c==x2.dis[y2.x]//这里是本题最诡异的地方
	    || x1.dis[y]+y1.dis[x]+s[i].c==x1.dis[y1.x] && x2.dis[x]+y2.dis[y]+s[i].c==x2.dis[y2.x]){//即使是逆向路径也要记录。
			inss(x,y,s[i].c);//分别记录目标路径,,因为建了反向边,所以就可以不用打另外两种状态。
		}
	}
	for(int i=1;i<=n;i++)
		if(qw[i]==0)
			dfs(i);
	int ans=0;
	for(int i=1;i<=n;i++)
		ans=max(ans,qw[i]);
	printf("%d",ans);
}

版权声明: https://blog.csdn.net/Deep_Kevin/article/details/79949560

汇编语言程序设计II

汇编语言是一门低级程序设计语言,在数以千计的计算机语言中,有着不可替代的重要地位,广泛地用于开发操作系统内核、设备驱动程序等。随着近年来物联网、嵌入式系统的发展,汇编语言在行业中的地位也再次攀升,在2017年1月的TIOBE排行榜上,再次进入前十。对大多数学习计算机的人士而言,是理解计算机系统核心知识的一个桥梁,在人才培养中也起着特殊的作用。课程面向计算机初学者,介绍汇编语言程序设计最基础的部分。
  • 2017年03月01日 22:27

SuperGCD,洛谷之提高历练地,数论(3-5)

前话      数论就是研究整数的理论。包括公约公倍数、质数、欧拉定理和同余方程等。正文       其实数论不止那么简单正文      第一题:SuperGCD      这一题就是很烦的代码加很烦...
  • Deep_Kevin
  • Deep_Kevin
  • 2018-04-07 17:19:43
  • 16

[SDOI2009]E&D,洛谷之提高历练地,博弈论(3-6)

正题      第四题:[SDOI2009]E&amp;amp;D      这题不是如此的简单,因为它要涉及到找规律和Sg函数。      首先的,我们可以打一个表来观察之间的关系。      Sg...
  • Deep_Kevin
  • Deep_Kevin
  • 2018-04-08 13:48:45
  • 13

【bzoj 1880】: [Sdoi2009]Elaxia的路线

http://www.lydsy.com/JudgeOnline/problem.php?id=1880 我智商低,这种标准noip难度的题都要想个几分钟 先spfa 4遍 x1、x2、y1、...
  • willinglive
  • willinglive
  • 2014-12-27 14:57:11
  • 643

[SDOI2009]Elaxia的路线

先以x1 x2 y1 y2为起点跑4遍SPFA 然后判定各条边在不在最短路上=如果两条最短路上都有则加入新图(有向边) 对新图跑拓扑求最长链 萌萌哒cd:可以无向边啊(TMD还A了我天老爷) ...
  • qq_35205305
  • qq_35205305
  • 2017-02-22 20:45:51
  • 84

BZOJ1880: [Sdoi2009]Elaxia的路线

康复训练的第一题智障了一个下午x1,y1,x2,y2 4个点每个点都跑一次SPFA,计算出这4个点到所有点的最短距离 然后对x1到y1的所有最短路径建一个拓扑图,先按照第二个人从x2到y2走,沿x...
  • L_0_Forever_LF
  • L_0_Forever_LF
  • 2017-01-12 16:41:53
  • 545

【BZOJ 1880】 [Sdoi2009]Elaxia的路线

思路题:spfa+topsort~
  • Regina8023
  • Regina8023
  • 2015-04-02 15:00:08
  • 950

luogu2149 [SDOI2009]Elaxia的路线

最短路+dp
  • FSAHFGSADHSAKNDAS
  • FSAHFGSADHSAKNDAS
  • 2017-02-16 20:52:07
  • 122

bzoj 1880: [Sdoi2009]Elaxia的路线(拓扑排序+spfa)

1880: [Sdoi2009]Elaxia的路线 Time Limit: 4 Sec  Memory Limit: 64 MB Submit: 974  Solved: 382 [Submit...
  • clover_hxy
  • clover_hxy
  • 2016-05-09 16:23:11
  • 621

bzoj1880: [Sdoi2009]Elaxia的路线 wikioi2309 SPFA

从四个点开始各扫一遍spfa()
  • EOD_realize
  • EOD_realize
  • 2014-07-08 23:36:20
  • 517
收藏助手
不良信息举报
您举报文章:[SDOI2009]Elaxia的路线,洛谷之提高历练地,较复杂图论II
举报原因:
原因补充:

(最多只允许输入30个字)