BZOJ 4162 Shlw loves matrix II

题面
此处为计算矩阵幂,直接快速幂不够快,考虑用数学方法优化。
对于一个 k × k k \times k k×k 的方阵 M M M,都有一个特征多项式 f ( x ) f(x) f(x) 满足 f ( M ) = 0 f(M)=0 f(M)=0 f ( x ) f(x) f(x) 的构造方法如下:
f ( x ) = d e t ( M − I x ) f(x)=det(M-Ix) f(x)=det(MIx)
其中, I I I 为单位矩阵,显然 f ( M ) = 0 f(M)=0 f(M)=0 成立。
对于这个多项式,直接求行列式不好求,但可以知道的是 f ( x ) f(x) f(x) k k k 次的,因此利用拉格朗日插值,求得 f ( x ) = ∑ i = 0 k a i M i f(x)=\sum_{i=0}^k a_i M^i f(x)=i=0kaiMi,其中 a i a_i ai 为已知常数。因此,可以得到:
M k + c = ∑ i = 0 k − 1 − a i a k M i + c M^{k+c}=\sum_{i=0}^{k-1}-\frac{a_i}{a_k}M^{i+c} Mk+c=i=0k1akaiMi+c
利用这个方程降次。对于 M M M 的任意次幂可以用一个 k − 1 k-1 k1 次多项式表达出来。这时,模拟之前的矩阵快速幂,改为多项式快速幂。设 M a = g 1 ( M ) , M b = g 2 ( M ) M^a=g_1(M),M^b=g_2(M) Ma=g1(M),Mb=g2(M),则 M a + b = g 1 ( M ) g 2 ( M ) M^{a+b}=g_1(M)g_2(M) Ma+b=g1(M)g2(M)。这时 g 1 ( x ) g 2 ( x ) g_1(x)g_2(x) g1(x)g2(x) 结果为一个 2 k − 2 2k-2 2k2 次多项式,将次幂从高到低依次降次,替换为更低次幂的多项式。设最后将答案表达为 h ( x ) h(x) h(x),则最后再还原,求出 h ( M ) h(M) h(M) 即可。
时间复杂度 O ( k 4 + l o g 2 n k 2 ) O(k^4+log_2n k^2) O(k4+log2nk2),空间复杂度 O ( k 2 ) O(k^2) O(k2)

#include<stdio.h>
#define R register int
#define L long long
#define I inline
#define P 1000000007
char s[10001];
I void Swap(int&x,int&y){
	int tem=x;
	x=y;
	y=tem;
}
I int Read(){
	int len=-1;
	do{
		len++;
		s[len]=getchar();
	}while(s[len]!=' ');
	return len;
}
I int PowMod(int x,int y){
	int res=1;
	while(y!=0){
		if((y&1)==1){
			res=(L)res*x%P;
		}
		x=(L)x*x%P;
		y>>=1;
	}
	return res;
}
typedef int Matrix[50][50],Poly[50];
I int Calc(Matrix B,int&n,const int x){
	Matrix A;
	for(R i=0;i!=n;i++){
		for(R j=0;j!=n;j++){
			A[i][j]=B[i][j];
		}
		A[i][i]+=P-x;
		if(A[i][i]>=P){
			A[i][i]-=P;
		}
	}
	int res=1;
	for(R i=0;i!=n;i++){
		if(A[i][i]==0){
			int p=-1;
			for(R j=i+1;j!=n;j++){
				if(A[j][i]!=0){
					p=j;
					break;
				}
			}
			if(p==-1){
				return 0;
			}
			res=P-res;
			for(R j=i;j!=n;j++){
				Swap(A[i][j],A[p][j]);
			}
		}
		res=(L)res*A[i][i]%P;
		int tem=PowMod(A[i][i],P-2);
		for(R j=i+1;j!=n;j++){
			int tem2=(L)tem*A[j][i]%P;
			for(R k=i;k!=n;k++){
				A[j][k]-=(L)tem2*A[i][k]%P;
				if(A[j][k]<0){
					A[j][k]+=P;
				}
			}
		}
	}
	return res;
}
int a[51],f[51],g[51];
I void Init(int&n){
	g[0]=1;
	f[0]=a[0]; 
	for(R i=1;i<=n;i++){
		int p=1,c=0;
		for(R j=i-1;j!=-1;j--){
			c=((L)c*i+f[j])%P;
			p=(L)p*(i-j)%P;
		}
		p=(L)(a[i]-c)*PowMod(p,P-2)%P;
		if(p<0){
			p+=P;
		}
		for(R j=1;j<=i;j++){
			f[j]=((L)p*g[j-1]+f[j])%P;
		}
		for(R j=i;j!=0;j--){
			g[j]=((L)g[j]*(P-i)+g[j-1])%P;
		}
		g[0]=(L)g[0]*(P-i)%P;
	}
}
Poly T;
I void PolyMul(Poly A,Poly B,int&n){
	static int t[100];
	for(R i=0;i!=n;i++){
		for(R j=0;j!=n;j++){
			t[i+j]=((L)A[i]*B[j]+t[i+j])%P;
		}
	}
	for(R i=n-1<<1;i>=n;i--){
		for(R j=0;j!=n;j++){
			t[i-n+j]=((L)t[i]*T[j]+t[i-n+j])%P;
		}
		t[i]=0;
	}
	for(R i=0;i!=n;i++){
		A[i]=t[i];
		t[i]=0;
	}
}
I void MatrixAdd(Matrix A,Matrix B,int x,int&n){
	for(R i=0;i!=n;i++){
		for(R j=0;j!=n;j++){
			A[i][j]=((L)x*B[i][j]+A[i][j])%P;
		}
	}
}
I void MatrixMul(Matrix A,Matrix B,int&n){
	Matrix C;
	for(R i=0;i!=n;i++){
		for(R j=0;j!=n;j++){
			C[i][j]=0;
		}
	}
	for(R i=0;i!=n;i++){
		for(R j=0;j!=n;j++){
			register unsigned L t=A[i][j];
			for(R k=0;k!=n;k++){
				C[i][k]=(t*B[j][k]+C[i][k])%P;
			}
		}
	}
	for(R i=0;i!=n;i++){
		for(R j=0;j!=n;j++){
			A[i][j]=C[i][j];
		}
	}
}
int main(){
	int l=Read(),n;
	scanf("%d",&n);
	Matrix A,S,B;
	for(R i=0;i!=n;i++){
		for(R j=0;j!=n;j++){
			scanf("%d",A[i]+j);
			S[i][j]=B[i][j]=0;
		}
		B[i][i]=1;
	}
	for(R i=0;i<=n;i++){
		a[i]=Calc(A,n,i);
	}
	Init(n);
	Poly D,F;
	int tem=PowMod(P-f[n],P-2);
	for(R i=0;i!=n;i++){
		D[i]=F[i]=0;
		T[i]=(L)f[i]*tem%P;
	}
	D[1]=F[0]=1;
	for(R i=l-1;i!=-1;i--){
		if(s[i]=='1'){
			PolyMul(F,D,n);
		}
		PolyMul(D,D,n);
	}
	for(R i=0;i!=n;i++){
		MatrixAdd(S,B,F[i],n);
		MatrixMul(B,A,n);
	}
	for(R i=0;i!=n;i++){
		for(R j=0;j!=n;j++){
			printf("%d ",S[i][j]);
		}
		puts("");
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值