机器学习入门之决策树完成鸢尾花分类
决策树是机器学习中一种简单而又经典的算法,学习使用 scikit-learn 来构建一个决策树分类模型,最后使用此模型预测鸢尾花的种类
决策树基本原理
决策树简介
决策树是一种特殊的树形结构,一般由节点和有向边组成。其中,节点表示特征、属性或者一个类。而有向边包含有判断条件。
如图所示,决策树从根节点开始延伸,经过不同的判断条件后,到达不同的子节点。而上层子节点又可以作为父节点被进一步划分为下层子节点。一般情况下,我们从根节点输入数据,经过多次判断后,这些数据就会被分为不同的类别。这就构成了一颗简单的分类决策树。

举一个小例子,假设在蓝桥云课工作多年仍然单身的小楼和他母亲在给他介绍对象时的一段对话:
母亲:小楼,你都 28 了还是单身,明天亲戚家要来个姑娘要不要去见见。
小楼:多大年纪?
母亲:26。
小楼:有多高?
母亲:165厘米。
本文介绍了决策树的基本原理,包括决策树简介、特征选择、生成算法和修剪策略。通过鸢尾花分类实验,阐述了如何使用决策树进行分类,并探讨了数据集划分、模型训练和预测的过程。文中提到了ID3、C4.5和CART算法,以及在实际应用中如何避免过拟合。最后,通过scikit-learn库展示了鸢尾花数据集的预处理和模型训练,实现了高准确度的分类预测。
订阅专栏 解锁全文
4万+

被折叠的 条评论
为什么被折叠?



