ifm virtual check part 4: what are corresponding phd studies here at ifm?

graduate studies 专栏收录该内容
291 篇文章 0 订阅

在这里插入图片描述
Cambridge University logoResearch at CambridgeAbout the UniversityStudy at Cambridge

For businessFor governments For universities For students For alumni For media Intranet
Toggle navigation
About IfM
Research (current)
Education
Knowledge transfer
People
Insights
Events
News
Department of Engineering
IfM Home > Research > Technology Management > Research Areas > Strategic Technology Management > Past PhD Research in STM
Technology Management
Overview
News
Insights
Research Areas
STIM Consortium
Publications
People
Join the mailing list
Consultancy and support
Contact
Past PhD Research in STM
Corporate sustainability

This research explores the challenge organisations have in evaluating the complex issues surrounding sustainability when devising their business strategy. His aim for the research is to build the business case for organisations transitioning to more sustainable practices to minimise their exposure to risks arising from long term sustainability trends. (Elliott More)

Dynamic platform strategy

This research focuses on the platform owners’ strategic choice in response to the changing environment, exploring the context of the interaction and influence of platform strategies, dynamic capabilities and environmental factors on firms’ management performance.
(Chung-Lin Tsai)

Implementation of additive manufacturing technologies for mass customisation

The PhD aims to explore how companies implement additive manufacturing technologies for production strategies such as mass customisation. The research focuses on enterprises that operate the technologies for higher scale production volumes and on companies that manufacture additive manufacturing systems. Research insights gathered throughout the PhD will help with the development of a framework for implementation. (Dominik Deradjat)

Manufacturing excellent engineers: Complex skill development

The purpose of this part-time PhD is to develop a better understanding of skill development in Higher Education (HE) with particular reference to more complex skills used in work related contexts. The IfM postgraduate Industrial Systems, Manufacturing and Management MPhil Programme is being used as a case study for this research. The work so far has resulted in:
a preliminary skills development framework aimed at teaching staff
a framework which describes the activities typically required of students whilst undertaking their short industrial placements. This is aimed at supporting both staff and students and is already being used in IfM programmes. (Judith Shawcross)

Technology management through strategic ambidexterity

This research explores how strategic ambidexterity affects the performance of corporate venturing firms. (Dayo Abinusawa)

Technology selection in the mission critical communications industry

This research aims to explore the challenges that organisations face during the technology selection process in complex business environments, the focus is on the systems customer’s perspective in the mission critical communications industry. The aim is to develop a technology selection framework and to understand how different stakeholders affect the choice of technology. (Ahmed Mashhour)

Technology management tool configuration

Numerous tools have been developed to assist technology managers in their tasks. Examples include: portfolio tools, technology roadmapping, scenario analysis, quality function deployment, and benchmark methods. Management tools can be powerful only if they are suited to the problem and context of application. Thus, customising tools requires a careful analysis of the problem and the environment of the firm. In my studies I am investigating how technology management tools can be configured to suit the individual context of the firm. The idea is to provide managers with a guideline that points out the important factors that should be taken into consideration before a tool is configured. (Jan-Niklas Keltsch)

Towards Flexible Management for the Fuzzy Front-End of Innovation

The early phases of the innovation process, also known as the fuzzy front-end, have been a challenge for every business that intends to compete through product innovation. Several studies have explored the front-end, with progress regarding description of its features, activities, barriers, best practices, tools, methods, etc. Nevertheless, companies still face problems in managing it effectively. (Maicon Oliveira, visiting Doctoral student)

The Technology Management Compass

This work deals with the role of senior technology and innovation executives in planning for, and reacting to, discontinuities. The ongoing interest in this research hinges on the application of a framework called the “Technology Management Compass” which supports practitioner decision-making when planning or reacting to discontinuities (called “Technology Transition Points” in the research). (Dr Chris van der Hoven)

Developing a framework for depicting the radical innovation process in established firms

A framework has been developed which defines and depicts the radical innovation process throughout the lifecycle from early concept to maturity, considering technology, market, management, business, partnering and finance aspects. (Dr Lan Tao)

Commercialisation of advanced material innovations

Commercialisation of new technologies from university origins, specifically advanced material innovations (Dr Sarah Lubik)

Consequences of Entrepreneurial Failure

There is a high failure rate among technology ventures, but what happens to entrepreneurs who fail? What do they learn and what do they do next? Keith Cotterill is conducting phenomenological research for his doctorate in this domain, examining the experience of such entrepreneurs in Cambridge, Munich and Silicon Valley. (Keith Cotterill)

Risk handling in roadmapping

This research seeks to improve the way in which risk is dealt with in roadmapping initiatives, focusing on business strategy and sector level foresight applications. (Imoh Ilevbare)

Characteristics of R&D organisations and performance of technology intelligence

This research investigates the relationships between a variety of characteristics of R&D organisations and performance of technology intelligence. At the heart of the suggested approach is computer simulation that is relatively free from data constraints and permits one to study a problem at several different level of abstraction. Specifically, an agent-based model is employed to consider the mechanism of information provision in technology intelligence. (Changyong Lee: Visitor to CTM)

Technology acquisition through collaboration

This research is exploring the conditions that enable successful technology acquisition through collaborative means when early stage technologies are involved, including consideration of the characteristics of the technology and perspectives of both technology provider and receiver firms. (Victor Ortiz)

Strengthening the relationships between R&D and marketing

The impact of innovation management consultancy services on intra-organisational relationship is difficult to measure. This research project aims to determine the potential impact areas of these consultancy services on the relationship between R&D and marketing,within large companies. (Luzselene Rincon)

Technology management: design and customisation of analytical tools

The focus of this study is the link between the technological base of a firm, its technology strategy and corporate strategy as well as the interaction and influence of these elements during the strategy formulation process. The main academic interest lies in the supportive tools for these strategic planning processes, such as roadmapping and portfolio methods. (Clemens Chaskel)
Share This

Share

Institute for Manufacturing
17 Charles Babbage Road
Cambridge CB3 0FS
+44 (0)1223 766141
ifm-enquiries@eng.cam.ac.uk
Site Map | Freedom of Info | Privacy
Stay in touch:

Research
Asset Management
Business Model Innovation
Complex Additive Materials
Design Management
Digital Manufacturing
Distributed Information & Automation Laboratory
Fluids in Advanced Manufacturing
Healthcare
Industrial Photonics
Industrial Resilience
Industrial Sustainability
Inkjet Research
Innovation and Intellectual Property
International Manufacturing
Manufacturing Analytics
Manufacturing Industry Education Research
NanoManufacturing
Science, Technology & Innovation Policy
Strategy and Performance
Technology Enterprise
Service Alliance
Technology Management
Services
About IfM ECS
Consultancy
Professional development
For business
For government
For universities
Open courses
News
Department of Engineering
Accessibility | © University of Cambridge 2016

剑桥大学标志剑桥大学研究关于剑桥大学在剑桥学习

面向企业面向政府面向大学面向学生面向校友面向媒体内网
切换导航
关于IfM
研究(目前)
教育方面
知识转移
人员
洞察力
事件
新闻中心
工程系
IfM首页 > 研究 > 技术管理 > 研究领域 > 战略技术管理 > 过去的STM博士研究项目
技术管理
概述
新闻中心
洞察力
研究领域
STIM财团
著作
人员
加入邮件列表
咨询和支助
联系我们
过去在STM的博士研究
企业可持续性

这项研究探讨了各组织在设计其业务战略时,在评估围绕可持续性的复杂问题方面所面临的挑战。他的研究目的是为组织过渡到更多的可持续发展实践建立商业案例,以最大限度地减少长期可持续发展趋势所带来的风险。(Elliott More)

动态平台战略

本研究主要关注平台所有者应对环境变化的战略选择,探讨平台战略、动态能力和环境因素对企业管理绩效的互动和影响的背景。
(蔡忠林)

实施快速成型制造技术,实现大规模定制。

该博士旨在探讨企业如何实施快速成型制造技术以实现大规模定制等生产策略。研究的重点是操作该技术进行更大规模生产的企业,以及制造增材制造系统的企业。整个博士期间收集的研究见解将有助于制定实施框架。(Dominik Deradjat)

制造优秀的工程师。复杂的技能发展

这个兼职博士的目的是为了更好地了解高等教育中的技能发展,特别是与工作相关的更复杂的技能。IfM的工业系统、制造和管理硕士研究生课程被用来作为这项研究的案例研究。迄今为止的工作成果包括
一个以教学人员为对象的初步技能发展框架
一个描述学生在进行短期工业实习时通常需要的活动的框架。该框架旨在为工作人员和学生提供支持,并已在IfM课程中使用。(Judith Shawcross)

通过战略灵活性进行技术管理

本研究探讨了战略灵活性如何影响企业风险投资公司的绩效。(Dayo Abinusawa)

关键任务通信业的技术选择

本研究旨在探索组织在复杂的商业环境中技术选择过程中所面临的挑战,重点是在关键任务通信行业中系统客户的角度。目的是开发一个技术选择框架,并了解不同的利益相关者如何影响技术的选择。(Ahmed Mashhour)

技术管理工具配置

已经开发了许多工具来协助技术管理人员完成任务。例如:组合工具、技术路线图、情景分析、质量功能部署和基准方法。管理工具只有在适合问题和应用环境的情况下,才能发挥强大的作用。因此,定制工具需要仔细分析问题和企业的环境。在我的研究中,我正在研究如何配置技术管理工具,以适应企业的个体环境。我的想法是为管理者提供一个指南,指出在配置工具之前应该考虑的重要因素。(Jan-Niklas Keltsch)

走向创新前端模糊的柔性管理之路

创新过程的早期阶段,也被称为模糊的前端,一直是每一个打算通过产品创新进行竞争的企业所面临的挑战。一些研究对前端进行了探讨,在描述其特征、活动、障碍、最佳做法、工具、方法等方面取得了进展。然而,企业仍然面临着有效管理的问题。(Maicon Oliveira,访问博士生)

技术管理指南针

这项工作涉及高级技术和创新管理人员在规划和应对不连续性方面的作用。这项研究的持续关注点在于一个被称为 "技术管理指南针 "的框架的应用,该框架支持从业人员在规划或应对不连续性时的决策(研究中称为 “技术过渡点”)。(Chris van der Hoven博士)

制定一个框架来描述成熟企业的激进创新过程

我们建立了一个框架,定义和描述了从早期概念到成熟的整个生命周期的激进创新过程,考虑了技术、市场、管理、商业、合作和财务等方面。(陶岚博士)

先进材料创新的商业化

将源自大学的新技术商业化,特别是先进的材料创新(Sarah Lubik博士)。

创业失败的后果

科技创业中失败率很高,但失败的创业者会怎样?他们学到了什么,下一步怎么做?Keith Cotterill正在为他在这一领域的博士学位进行现象学研究,考察剑桥、慕尼黑和硅谷的这类创业者的经历。(Keith Cotterill)

路线规划中的风险处理

这项研究旨在改进在路线图举措中处理风险的方式,重点是商业战略和部门一级的展望应用。(Imoh Ilevbare)

研发机构的特点和技术情报的表现

本研究调查了研发组织的各种特征与技术智能绩效之间的关系。所建议的方法的核心是计算机模拟,它不受数据限制,允许人们在几个不同的抽象层次上研究一个问题。具体来说,我们采用了一个基于代理的模型来考虑技术情报中的信息提供机制。(李长勇:CTM的访问者)

通过合作获取技术

本研究正在探索当涉及早期技术时,通过合作方式成功获取技术的条件,包括考虑技术的特点以及技术提供方和接受方企业的观点。(Victor Ortiz)

加强研发和营销之间的关系

创新管理咨询服务对组织内部关系的影响难以衡量。本研究项目旨在确定这些咨询服务对大公司内部研发和营销关系的潜在影响领域。(Luzselene Rincon)

技术管理:分析工具的设计和定制

本研究的重点是公司的技术基础、技术战略和公司战略之间的联系,以及这些要素在战略制定过程中的相互作用和影响。学术界的主要兴趣在于这些战略规划过程的支持性工具,如路线图和投资组合方法。(Clemens Chaskel)
分享此文

分享

制造业研究所
17 Charles Babbage Road
Cambridge CB3 0FS
+44 (0)1223 766141
ifm-enquiries@eng.cam.ac.uk
网站地图|信息自由|隐私权
保持联系。

研究
资产管理
商业模式创新
复杂的快速成型材料
设计管理
数字化制造
分布式信息与自动化实验室
先进制造中的流体
医疗保健
工业光子学
工业复原力
工业可持续性
喷墨研究
创新与知识产权
国际制造
制造分析
制造业教育研究
纳米制造
科学、技术和创新政策
战略与绩效
技术企业
服务联盟
技术管理
服务项目
关于易福门
顾问服务
专业发展
业务方面
政府方面
大学
公开课程
新闻中心
工程系
剑桥大学2016年无障碍设施

Hyunkyu Park joined the Centre for Technology Management as a PhD student in October 2014 under the supervision of Dr Tim Minshall. His current research interests are business model innovation, business ecosystem, information system design, especially in the field of cross border e-commerce. He holds a BA in Anthropology at Chung-Ang University in Korea and MEng in User Experience at Seoul National University in Korea. Prior to joining Cambridge, he was a Senior Researcher in User Experience Design at the R&D department of LG.

在这里插入图片描述

过去在STM的博士研究
企业可持续性

这项研究探讨了各组织在设计其业务战略时,在评估围绕可持续性的复杂问题方面所面临的挑战。他的研究目的是为组织过渡到更多的可持续发展实践建立商业案例,以最大限度地减少长期可持续发展趋势所带来的风险。(Elliott More)

动态平台战略

本研究主要关注平台所有者应对环境变化的战略选择,探讨平台战略、动态能力和环境因素对企业管理绩效的互动和影响的背景。
(蔡忠林)

实施快速成型制造技术,实现大规模定制。

该博士旨在探讨企业如何实施快速成型制造技术以实现大规模定制等生产策略。研究的重点是操作该技术进行更大规模生产的企业,以及制造增材制造系统的企业。整个博士期间收集的研究见解将有助于制定实施框架。(Dominik Deradjat)

制造优秀的工程师。复杂的技能发展

这个兼职博士的目的是为了更好地了解高等教育中的技能发展,特别是与工作相关的更复杂的技能。IfM的工业系统、制造和管理硕士研究生课程被用来作为这项研究的案例研究。迄今为止的工作成果包括
一个以教学人员为对象的初步技能发展框架
一个描述学生在进行短期工业实习时通常需要的活动的框架。该框架旨在为工作人员和学生提供支持,并已在IfM课程中使用。(Judith Shawcross)

通过战略灵活性进行技术管理

本研究探讨了战略灵活性如何影响企业风险投资公司的绩效。(Dayo Abinusawa)

关键任务通信业的技术选择

本研究旨在探讨组织在复杂的商业环境中技术选择过程中所面临的挑战,重点是在关键任务通信行业中系统客户的角度。目的是开发一个技术选择框架,并了解不同的利益相关者如何影响技术的选择。(Ahmed Mashhour)

技术管理工具配置

已经开发了许多工具,以协助技术管理人员完成任务。例如:组合工具、技术路线图、情景分析、质量功能部署和基准方法。管理工具只有在适合问题和应用环境的情况下,才能发挥强大的作用。因此,定制工具需要仔细分析问题和企业的环境。在我的研究中,我正在研究如何配置技术管理工具,以适应企业的个体环境。我的想法是为管理者提供一个指南,指出在配置工具之前应该考虑的重要因素。(Jan-Niklas Keltsch)

走向创新前端模糊的柔性管理之路

创新过程的早期阶段,也被称为模糊的前端,一直是每一个打算通过产品创新进行竞争的企业所面临的挑战。一些研究对前端进行了探讨,在描述其特征、活动、障碍、最佳做法、工具、方法等方面取得了进展。然而,企业仍然面临着有效管理的问题。(Maicon Oliveira,访问博士生)

技术管理指南针

这项工作涉及高级技术和创新管理人员在规划和应对不连续性方面的作用。这项研究的持续关注点在于一个被称为 "技术管理指南针 "的框架的应用,该框架支持从业人员在规划或应对不连续性时的决策(研究中称为 “技术过渡点”)。(Chris van der Hoven博士)

制定一个框架来描述成熟企业的激进创新过程

我们建立了一个框架,定义和描述了从早期概念到成熟的整个生命周期的激进创新过程,考虑了技术、市场、管理、商业、合作和财务等方面。(陶岚博士)

先进材料创新的商业化

将源自大学的新技术商业化,特别是先进的材料创新(Sarah Lubik博士)。

创业失败的后果

科技创业中失败率很高,但失败的创业者会怎样?他们学到了什么,下一步怎么做?Keith Cotterill正在为他在这一领域的博士学位进行现象学研究,考察剑桥、慕尼黑和硅谷的这类创业者的经历。(Keith Cotterill)

路线规划中的风险处理

这项研究旨在改善在路线图举措中处理风险的方式,重点是商业战略和部门一级的展望应用。(Imoh Ilevbare)

研发机构的特点和技术情报的表现

本研究调查了研发组织的各种特征与技术智能绩效之间的关系。所建议的方法的核心是计算机模拟,它不受数据限制,允许人们在几个不同的抽象层次上研究一个问题。具体来说,我们采用了一个基于代理的模型来考虑技术情报中的信息提供机制。(李长勇:CTM的访问者)

通过合作获取技术

本研究正在探索当涉及早期技术时,通过合作方式成功获取技术的条件,包括考虑技术的特点以及技术提供方和接受方企业的观点。(Victor Ortiz)

加强研发和营销之间的关系

创新管理咨询服务对组织内部关系的影响难以衡量。本研究项目旨在确定这些咨询服务对大公司内部研发和营销关系的潜在影响领域。(Luzselene Rincon)

技术管理:分析工具的设计和定制

本研究的重点是公司的技术基础、技术战略和公司战略之间的联系,以及这些要素在战略制定过程中的相互作用和影响。学术界的主要兴趣在于这些战略规划过程的支持性工具,如路线图和投资组合方法。(Clemens Chaskel)
分享此文

分享

在这里插入图片描述

A literature review on the state-of-the-art on intellectual property analytics
Leonidas Aristodemou, University of Cambridge
Frank Tietze, University of Cambridge

In this paper, we contribute in solving the problem of incomplete adoption of IPA within firms, by producing a state of the art literature review on IPA methods and techniques. The paper’s aim is to summarise the existing work in the field, especially when it comes to the application of machine learning, artificial neural networks and artificial intelligence in the intellectual property domain.

Keywords: Literature review, intellectual property analytics

Centre for Technology Management working paper series
ISSN 2058-8887
No. 2 November 2017
A literature review on the state-of-the-art on intellectual property analytics
doi.org/10.17863/CAM.13928
Leonidas Aristodemou (CTM, University of Cambridge) * Frank Tietze (CTM, University of Cambridge)

  • Please contact the corresponding author for feedback: la324@cam.ac.uk
    Centre for
    Technology Management

Centre for Technology Management working paper series
ISSN 2058-8887
No. 2 November 2017
A literature review on the state-of-the-art on intellectual property analytics
doi.org/10.17863/CAM.13928
Leonidas Aristodemou (CTM, University of Cambridge) * Frank Tietze (CTM, University of Cambridge)

  • Please contact the corresponding author for feedback: la324@cam.ac.uk
    Centre for
    Technology Management

A Literature Review
on the state-of-the-art on Intellectual Property Analytics (IPA)
Leonidas Aristodemou (la324@cam.ac.uk) Dr. Frank Tietze (frank.tietze@eng.cam.ac.uk)
Centre for Technology Management (CTM), Institute for Manufacturing (IfM), Department of Engineering, University of Cambridge
20th January 2018
Abstract
Big data is increasingly available in all areas of manufacturing and operations, which presents an opportunity for better decision making, to introduce the next generation of innovative technologies. Recently, there has been a large development in the field of patent analytics, which describes the science of analysing large amounts of patent information to discover relationships and trends (Trippe, 2003). Similarly, we define Intellectual Property Analytics (IPA) as the data science of analysing large amount of IP information, to discover relationships, trends and patterns. It is a multidisciplinary approach to gain valuable knowledge from data and to drive decision making, rooted in the business context. With the rise of artificial intelligence, there are a number of techniques available for analysing big data; however, while these techniques have widely been applied in other fields to complement management processes, they have hardly been applied in the IP field (Lupu, 2017). In this paper, we contribute in solving the problem of incomplete adoption of IPA within firms, by producing a literature review on the state-of-the-art on IPA methods and techniques.

2
Research Background
Big data is increasingly available in all areas of manufacturing and operations (OECD, 2016). Data as such presents value for enabling a competitive data-driven economy (EPSRC’s Delivery Plan 2016, theme of “Connectedness” (EPSRC, 2016b)), which is at the heart of the Internet of things and Industry 4.0 (EPO, 2016). Increased data availability presents an opportunity for better decision making and strategy development (EPSRC, 2016a), to introduce the next generation of innovative and disruptive technologies and drive business innovation through digital transformation (EPSRC’s Area of “Connected Nation” (EPSRC, 2016c)).
Over the last two decades, there has been a large development in the field of patent analytics. Patent analytics describes the science of analysing large amounts of intellectual property information, in relation to other data sources, to discover relationships and trends (Abbas et al., 2014; Baglieri and Cesaroni, 2013; Moehrle et al., 2010; Trippe, 2003). With the digitization of patent data, the world’s largest repository of technical information has become accessible for rapidly decreasing costs. Patent data has long been considered the world’s largest repository of technological information, and only with its digitization since the BACON project in 1984 (Dintzner and Van Thieleny, 1991) and gradual improvements of analytics over the last decades, patent data has become increasingly accessible to a non-specialist audience (Aristodemou et al., 2017; Raturi et al., 2010). With the rise of artificial intelligence (AI), machine learning (ML), deep learning (DL) and artificial neural networks (ANN), there are a number of methods and techniques for analysing IP data (Abbas et al., 2014; Lupu, 2017; Oldham and Fried, 2016; Trippe, 2015). However, while machine learning and deep learning algorithms have widely been applied in other fields to analyse large amounts of data and complement management processes, they have hardly been applied in the IP field (Lupu, 2017).
In particular, in a study we run, we have used the technology roadmapping approach (Phaal et al., 2012) to explore the future of patent analytics (Aristodemou and Tietze, 2017). We identify 11 priority technologies, such as artificial intelligence and artificial neural networks, that are important to be adopted in the patent analytics domain (Lupu, 2017). We also identify 21 enablers for potential breakthrough progress of the field that cluster around four themes: technology development cycles and methodologies; legislation and standardisation for patent data quality; continuous professional development; and cooperation between industry and academia. From these, we concentrate on understanding analytic techniques further, and in specific, we identify the need of adoption of these computer science techniques techniques, to complement decision processes and provide decision support (Aristodemou et al., 2017; Lupu, 2017). This is very much in line with the propositions by Agrawal et al. (2017), which suggest that AI can improve prediction capabilities, which complements human judgement in making decisions (Ciccatelli, 2017; Simmer, 2001; Stading, 2017a,b). They argue that machine

3
prediction is a complement to human judgement, and can provide a form of decision support (Turban et al., 2005).
In this paper, we contribute in solving the problem of incomplete adoption of intellectual property analytics within firms (Aristodemou and Tietze, 2017), by producing a literature review on the state-of-the-art on IPA methods and techniques.
Methodology
The paper aims to summarise the existing work in the field, especially when it comes to the application of machine learning, artificial neural networks and artificial intelligence in the intellectual property domain (Abbas et al., 2014; Lupu, 2017). To carry out the literature review, the narrative literature review approach has been adopted (Cronin et al., 2008), and a research search strategy has been developed (Creswell, 2013; Robson, 2011). The articles on intellectual property analaytics and patent analytics were searched through web searches.
The research follows a three phase process. We use a problem-solving approach (Alvesson and Sandberg, 2011), to identify the need for the literature review. Firstly, we identify the prob- lem opportunity through the following: a study of the future of patent analytics (Aristodemou and Tietze, 2017; Aristodemou et al., 2017), and the problem identification (Agrawal et al., 2017; Cooper, 2007; Lupu, 2017). Secondly, we search the most relevant research work on intellectual property analytics and patent analytics, through Scopus and Google Scholar. We narrow the papers using the search strategy of key terms below:
• (TITLE-ABS-KEY(“Patent” OR “patent data” OR “IP” OR “IP data” OR “Intellectual property” OR “intellectual property data”) AND (“analysis” OR “analytics” OR “informatics” OR “analytic methods” OR “information retrieval”)) AND (“Patent analysis” OR “Patent data” OR “Patin- formatics” OR “Patent informatics” OR “Patent analytics” OR “IP analytics” OR “IP analysis” OR “IP informatics” OR “intellectual property analysis” OR “intellectual property analytics” OR “intellectual property informatics” OR “IP information retrieval” OR “Patent information retrieval”)
Thirdly, the reference lists of the published research articles are scanned. Then, we select the highest cited papers from these, such as the papers by Abbas et al. (2014); Bonino et al. (2010); Lupu (2013); Moehrle et al. (2010); Trippe (2003), and we build on them by reviewing these and the ones citing. The articles published in more recent years, with a focus on the development of tools, techniques and algorithms for analyzing intellectual property data based on machine learning and deep learning, were selected for presenting a discussion on intellectual property analytics methods and techniques. The purpose of presenting the articles in detail is to provide the readers with the latest research on intellectual property analytics in a unified form.

Intellectual Property Analytics
Intellectual Property Analytics (IPA) is the data science of analysing large amount of intellectual property information, to discover relationships, trends and patterns in the data (Fig.1). It is a multidisciplinary approach that makes use of mathematics, statistics, computer programming, and operations research to gain valuable knowledge from data, to drive decision making rooted in the business context. We make use of this definition, as there is no widely accepted definition of IPA; however, this is very much in line with the definition of Patinformatics (Moehrle et al., 2010; Trippe, 2003).
Fig. 1 Positional Venn diagram on the definition of intellectual property analytics
Intellectual Property Analytics Process
The process of intellectual property analytics has been discussed in the literature in different context, mainly around the analysis of patents, due to the nature of the structured and unstruc- tured data they contain within. Mainly, it has been viewed as the process with which one can analyse patent data with different methods to arrive at meaningful conclusions. Trippe (2015) has created a WIPO guide, which identifies and explains a large number of concepts on patent analysis and the methodology on how to run the different types of analysis. With the recent advancements of artificial intelligence, there has been a positive amount of activity around the different methodologies involved that could be applied to intellectual property data (Aristodemou et al., 2017; Lupu, 2017).
Most of the literature makes use of the process as defined by Moehrle et al. (2010) in a business context (Fig.2), and consists of three main stages: the pre-processing stage, the processing stage and the post processing stage. In the pre-processing stage, the data are collected, after information extraction, cleaned and well prepared, with the purpose in providing these data in high quality, correctness and completeness. In the processing stage, the analysis of the data extracted in the pre-processing stage takes place using different methods to classify,
4

5
(a) Pre-processing stage (b) Processing stage © Post processing stage Fig. 2 Patent analytics process, source: Moehrle et al. (2010)
cluster, and identify meaningful insights from the information. In the post processing stage, also known as discovered knowledge, the results and information from the processing stage are visualized and evaluated to support strategic decision making.
This is similar to Abbas et al. (2014), who presents a generic patent analysis work-flow, with the distinction that every analysis made has a specific purpose (Fig.4). Raturi et al. (2010) argues that this process is a complementary process to the innovation cycle, and that the analysis of intellectual property data has many application in many fields. Bonino et al. (2010) links the patent life cycle to the patent related information sources and the different tasks along the patent analytics tasks. They argue that a patent analytics process is a purpose-driven process, which consists of search tasks (patent ability, validity, infringement, portfolio survey, technology survey), analysis tasks (micro and macro assessment of business value, technical assessment and technology suggestions), and monitoring tasks (early sign monitoring, technology monitoring, portfolio monitoring, single patent monitoring).

Similarly, Baglieri and Cesaroni (2013) argue that patent analysis is a form of patent intelligence to support decision making. They argue that there are two meanings to the term of patent analysis, the process that considers all of the above, and the actual analysis of the patent data. They use the research by Bonino et al. (2010) to define the three patent analysis tasks, patent searching, patent analysing and patent monitoring, and link value of information from these to the open innovation funnel (Fig.3).
Fig. 3 Patent analysis within the innovation context, source: Baglieri and Cesaroni (2013)
Intellectual Property Analytics Methods
There are several analytic methods that have been used with intellectual property data, and specifically patent data (Abbas et al., 2014; Trippe, 2015). Fig.5 shows the methods or approaches that have been used to analyse IP data.
One form of IP data analysed are patent data, which contain a series of structured and unstructured data.Abbas et al. (2014) provide a comprehensive literature review on the patent analytics techniques, where they distinguish between text mining and visualization approaches and the applicability to structured and unstructured data. Mainly the approaches shown in Fig. 5 are concentrated around text mining techniques, due to the nature of the patent data itself (Abbas et al., 2014; Bonino et al., 2010). However, visualization approaches also exist that translate the patterns and information from the analysis to meaningful insights, to aid decision making (Moehrle et al., 2010), as shown in Fig.2.
NLP is concerned with the interactions between computers and human (natural) languages, and, in particular, the processing of large natural language corpora. It uses computational
6

7
Fig. 4 Generic patent analysis work flow, source: Abbas et al. (2014)
linguistic mechanisms to represent the text found in any document. NLP has been used in hybrid structure with bibliographic coupling and text mining to discover patterns in a patent retrieval and analysis platform (Liu et al., 2011). Yoon and Lim (2013) construct patent maps dynamically by analysing the Subject-Action-Object (SAO) extracted structures, to identify the technological competition trends.Park et al. (2013b) utilize SAO structures, from extracted NLP language structures in patent documents, to compare them again TRIZ evolution trends to evaluate technological evolution. This method can be expanded to SAO based intelligent patent analysis, where the semantic similarities between patents can be visualized in patent maps and patent networks (Park et al., 2013a). Choi et al. (2012) develop a technology tree using NLP to extract SAO structures and perform similarity detection between patents. Park et al. (2013b) detect infringement by using SAO structures to express the relationships that exist between technological components, calculating semantic similarity.
In addition, integrating SAO structures and technology roadmapping approaches improves decision making by utilised the product-function-technology maps. Gerken and Moehrle (2012) utilize NLP through syntactic analysis to create semantic SAO structures to identify novelty among patents. Some authors use the property-function analysis, which uses grammatical analysis to extract properties and functions from patent documents, to create patent networks (Dewulf, 2013; Yoon and Kim, 2012).
Rule based approaches make use of inference and association rules. Shih et al. (2010) propose patent trend change mining, which has a change detection module, where keywords searching within patent documents allows for structure extraction, associating the structures and

8
Fig. 5 Intellectual property analytics methods in the literature
extracting trends. Yu and Lo (2009) use the IF-THEN rules in conjunction with the Kohonen learning algorithm and the first nearest neighbour heuristic to plan technology strategies.
Semantic analysis is the process of relating syntactic structures, from the levels of phrases, clauses, sentences and paragraphs to the level of the writing as a whole, to their language- independent meanings. They rely on domain knowledge and create relationships among domain specific concepts. Lee et al. (2013) proposes the detection of infringement using semantic analysis and dependency relationships. Wang and Cheung (2011) extract key concepts from patent documents to discover and use the abstracts of patent documents collected from the USTPO database to classify patent documents using the Naives-Bayes algorithm. Also, the development of ontologies for multiple domains can serve as an integration platform, to develop the knowledge base by populating the ontology classes (Taduri et al., 2011). The authors expand this to propose a knowledge based framework to facilitate retrieval of patent documents (Taduri et al., 2012).

9
ANN are computational algorithm that have found extensive utilization in solving many complex real-world problems. Mainly, patents data have been used for classification and tech- nology forecasting. Lamirel et al. (2003) propose a Kohonen self organizing map to perform a viewpoint oriented analysis to classify patent documents. The back-propagation algorithm has also been used to classify patent documents and create a knowledge management technology system (Trappey et al., 2005). In order to process large numbers of explicit knowledge docu- ments, Trappey et al. (2006) develop a document classification and search methodology based on neural network technology that helps companies manage patent documents more effectively. The authors expand this research to include ontology-based artificial neural networks to classify patent documents (Trappey et al., 2012). Lai and Che (2009) propose a valuation model for the monetary legal value of patents, based on the extension neural network incorporated with the factor analysis. Chen et al. (2013) utilizes the back-propagation algorithm to explore the non-linear influences of number of inventors, average age of patents, and age of patenting activities on patent citations and corporate performance in the US pharmaceutical industry. Karanikic ́ et al. (2017) develop and apply the extreme learning machine (ELM) using granted patents as one of the attributes to forecast gross domestic product (GDP) growth rate. In a similar approach, Jokanovic ́ et al. (2017) use as input attribute patent applications to estimate economic development.
Conclusion
In this paper, we have reviewed the literature on intellectual property analytics methods and techniques. While there is a large amount of literature on analysing IP data and several analytic methods deployed (Abbas et al., 2014), the application of computer science techniques, machine learning and deep learning, in the IP field, has hardly been applied (Ciccatelli, 2017; Lupu, 2017; Stading, 2017a,b). We contribute by reviewing the literature on the use of machine learning and artificial neural network methods in analysing IP data. In addition, we also contribute to the theoritcal foundations of IPA, by definning the term IPA, and the technologies, techniques and tools that constitute it (Aristodemou et al., 2017); a definition which has hardly been proposed, with efforts mostly concentrating on patent analytics/ informatics (Bonino et al., 2010; Moehrle et al., 2010; Trippe, 2003). This ensures the development of the industrial foundations of IPA, and how can firms use them to increase their knowledge on IP analytics. Further research is required in this field to identify use cases of IPA methods within the innovation process and apply these methods in firms.

References
Abbas, A., Zhang, L., and Khan, S. U. (2014). A literature review on the state-of-the-art in patent analysis. World Patent Information, 37:3–13.
Agrawal, A., Gans, J., and Goldfarb, A. (2017). How AI Will Change the Way We Make Decisions. Harvard Business Review, July:1–7.
Alvesson, M. and Sandberg, J. (2011). Generating Research Questions Through Problematiza- tion. Academy of Management Review, 36(2):247–271.
Aristodemou, L. and Tietze, F. (2017). Exporling the Future of Patent Analytics. Technical report, Institute for Manufacturing, University of Cambridge, Cambridge, UK.
Aristodemou, L., Tietze, F., Athanassopoulou, N., and Minshall, T. (2017). Exploring the Future of Patent Analytics: A Technology Roadmapping Approach. In R&D Management Conference 2017, Leuven, Belgium, pages 1–9.
Baglieri, D. and Cesaroni, F. (2013). Capturing the real value of patent analysis for R&D strategies. Technology Analysis & Strategic Management, 25(8):971–986.
Basheer, I. and Hajmeer, M. (2000). Artificial neural networks: fundamentals, computing, design, and application. Journal of Microbiological Methods, 43:3–31.
Bonino, D., Ciaramella, A., and Corno, F. (2010). Review of the state-of-the-art in patent information and forthcoming evolutions in intelligent patent informatics. World Patent Information, 32(1):30–38.
Chen, Y. S., Tien, W. P., Chen, Y. W., Lin, C. C., and Lee, Y. I. (2013). Using artificial neural network (ANN) to explore the influences of number of inventors, average age of patents, and age of patenting activities on patent performance and corporate performance. Proceedings - 2013 4th World Congress on Software Engineering, WCSE 2013, pages 136–139.
Choi, S., Park, H., Kang, D., Lee, J. Y., and Kim, K. (2012). An SAO-based text mining approach to building a technology tree for technology planning. Expert Systems with Applications, 39(13):11443–11455.
Ciccatelli, A. (2017). The Future of Big Data and Intellectual Property.
Cooper, R. G. (2007). Managing technology development projects. IEEE engineering manage-
ment review, 35(1):67–77.
Creswell, J. W. (2013). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches. 4th editio edition.

References 11 Cronin, P., Ryan, F., and Coughlan, M. (2008). Undertaking a literature review : a step-by-step
approach. 17(1):38–43.
Dewulf, K. (2013). Sustainable Product Innovation: The importance of the Front End Stage in
the Innovation Process. In Advances in Industrial Design Engineering, chapter Chapter 7. Dintzner, J. P. and Van Thieleny, J. (1991). Image handling at the European Patent Office:
BACON and first page. World Patent Information, 13(3):152–154.
EPO (2016). India and Europe explore the impact of Industry 4.0 on the patent system.
Technical report, European Patent Office, Munich, Germany.
EPSRC (2016a). Delivery Plan 2016-2020 Top Ten Messages. Technical report.
EPSRC (2016b). EPSRC Delivery Plan 2016/17-2019/20 Science for a Successful Nation. Technical report.
EPSRC (2016c). Science Strategy.
Gerken, J. M. and Moehrle, M. G. (2012). A new instrument for technology monitoring: Novelty in patents measured by semantic patent analysis.
Goffin, K. and Mitchell, R. (2016). Innovation Management: Effective Strategy and Implemen- tation. Palgrave Macmillan.
Ilevbare, I., Dusch, B., and Templeton, P. (2016). A framework and methodology for creating business tools. Technical report.
Jokanovic ́, B., Lalic, B., Milovancˇevic ́, M., Simeunovic ́, N., and Markovic ́, D. (2017). Eco- nomic development evaluation based on science and patents. Physica A: Statistical Mechanics and its Applications, 481:141–145.
Karanikic ́, P., Mladenovic ́, I., Sokolov-Mladenovic ́, S., and Alizamir, M. (2017). Prediction of economic growth by extreme learning approach based on science and technology transfer. Quality & Quantity, 51(3):1395–1401.
Lai, Y. H. and Che, H. C. (2009). Modeling patent legal value by Extension Neural Network. Expert Systems with Applications, 36(7):10520–10528.
Lamirel, J.-C., Al Shehabi, S., Hoffmann, M., and François, C. (2003). Intelligent patent analysis through the use of a neural network. Proceedings of the ACL-2003 workshop on Patent corpus processing -, 20:7–23.
Lee, C., Song, B., and Park, Y. (2013). How to assess patent infringement risks: a semantic patent claim analysis using dependency relationships. Technology Analysis & Strategic Management, 25(1):23–38.
Liu, S. H., Liao, H. L., Pi, S. M., and Hu, J. W. (2011). Development of a patent retrieval and analysis platform - A hybrid approach. Expert Systems with Applications, 38(6):7864–7868.
Lupu, M. (2013). Patent Retrieval, volume 7.

References 12 Lupu, M. (2017). Information retrieval, machine learning, and Natural Language Processing
for intellectual property information. World Patent Information, 49:A1–A3.
Martinsuo, M. and Poskela, J. (2011). Use of evaluation criteria and innovation performance in
the front end of innovation. Journal of Product Innovation Management, 28(6):896–914.
Moehrle, M. G., Walter, L., Bergmann, I., Bobe, S., and Skrzipale, S. (2010). Patinformatics as a business process: A guideline through patent research tasks and tools. World Patent Information, 32(4):291–299.
OECD (2016). Enabling the Next Production Revolution: the Future of Manufacturing and Services - Interim Report. Technical Report June, OECD.
Oldham, G. R. and Fried, Y. (2016). Job design research and theory: Past, present and future. Organizational Behavior and Human Decision Processes, 136:20–35.
Park, H., Kim, K., Choi, S., and Yoon, J. (2013a). A patent intelligence system for strategic technology planning. Expert Systems with Applications, 40(7):2373–2390.
Park, H., Ree, J. J., and Kim, K. (2013b). Identification of promising patents for technology transfers using TRIZ evolution trends. Expert Systems with Applications, 40(2):736–743.
Phaal, R., Routley, M., Athanassopoulou, N., and Probert, D. (2012). Charting Exploitation Strategies for Emerging Technology. Research-Technology Management, 55(2):34–42.
Raturi, M. K., Sahoo, P. K., Mukherjee, S., and Tiwari, A. K. (2010). Patinformatics – An Emerging Scientific Discipline.
Robson, C. (2011). Real world research. Edition. Blackwell Publishing. Malden, pages 1–608. Shih, M. J., Liu, D. R., and Hsu, M. L. (2010). Discovering competitive intelligence by mining
changes in patent trends. Expert Systems with Applications, 37(4):2882–2890.
Simmer, R. (2001). Using intellectual property data for competitive Intelligence. Vancouver:
University of British Columbia, pages 1–12.
Stading, T. (2017a). The Role of Artificial Intelligence in Intellectual Property. Stading, T. (2017b). Using Big Data to Make Intellectual Property a Strategic Weapon.
Taduri, S., Lau, G. T., Law, K. H., and Kesan, J. P. (2012). A patent system ontology for facilitating retrieval of patent related information. Proceedings of the 6th International Conference on Theory and Practice of Electronic Governance - ICEGOV ’12, page 146.
Taduri, S., Lau, G. T., Law, K. H., Yu, H., and Kesan, J. P. (2011). Developing an ontology for the U.S. patent system. In Proceedings of the 12th Annual International Digital Government Research Conference on Digital Government Innovation in Challenging Times - dg.o ’11, page 157.
Trappey, A., Lin, S., and Wang, A. (2005). Using neural network categorization method to develop an innovative knowledge management technology for patent document classification. Proceedings of the 9th International Conference on Computer Supported Cooperative Work in Design, 2.

References 13
Trappey, A. J., Trappey, C. V., Wu, C.-Y., and Lin, C.-W. (2012). A patent quality analysis for innovative technology and product development. Advanced Engineering Informatics, 26(1):26–34.
Trappey, A. J. C., Hsu, F. C., Trappey, C. V., and Lin, C. I. (2006). Development of a patent document classification and search platform using a back-propagation network. Expert Systems with Applications, 31(4):755–765.
Trippe, A. (2015). Guidelines for Preparing Patent Landscape Reports. Technical report, World Intellectual Property Organisation.
Trippe, A. J. (2003). Patinformatics: Tasks to tools. World Patent Information, 25(3):211–221. Turban, E., Aronson, J. E., and Liang, T.-P. (2005). Decision Support Systems and Intelligent
Systems. Prentice-Hall, 7th editio edition.
Wang, W. M. and Cheung, C. F. (2011). A Semantic-based Intellectual Property Management System (SIPMS) for supporting patent analysis. Engineering Applications of Artificial Intelligence, 24(8):1510–1520.
Yoon, J. and Kim, K. (2012). TrendPerceptor: A property-function based technology in- telligence system for identifying technology trends from patents. Expert Systems with Applications, 39(3):2927–2938.
Yoon, J. H. and Lim, S. S. (2013). Potential trade distortion effects of state trading enterprises under the tariff-rate quota scheme. Economics, 7:0–20.
Yu, W. D. and Lo, S. S. (2009). Patent analysis-based fuzzy inference system for technological strategy planning. Automation in Construction, 18(6):770–776.
技术管理中心工作文件系列
ISSN 2058-8887
2017年11月第2期
关于知识产权分析技术现状的文献综述
doi.org/10.17863/CAM.13928
Leonidas Aristodemou (剑桥大学,CTM) * Frank Tietze (剑桥大学,CTM)

  • 请与相应作者联系以获得反馈:la324@cam.ac.uk。
    中心
    技术管理

技术管理中心工作文件系列
ISSN 2058-8887
2017年11月第2期
关于知识产权分析技术现状的文献综述
doi.org/10.17863/CAM.13928
Leonidas Aristodemou (剑桥大学,CTM) * Frank Tietze (剑桥大学,CTM)

  • 请与相应作者联系以获得反馈:la324@cam.ac.uk。
    中心
    技术管理

文献审查
关于知识产权分析(IPA)的最新进展的报告
Leonidas Aristodemou (la324@cam.ac.uk) Frank Tietze博士 (frank.tietze@eng.cam.ac.uk)
剑桥大学工程系制造研究所技术管理中心(CTM)
2018年1月20日
摘要
大数据越来越多地出现在制造和运营的各个领域,这为更好的决策、引进下一代创新技术提供了机会。最近,专利分析领域有了很大的发展,它描述了分析大量专利信息以发现关系和趋势的科学(Trippe,2003)。同样,我们将知识产权分析(IPA)定义为分析大量知识产权信息,以发现关系、趋势和模式的数据科学。它是一种多学科的方法,从数据中获得有价值的知识,并推动决策的制定,植根于商业背景。随着人工智能的兴起,有许多技术可用于分析大数据;然而,虽然这些技术已经广泛地应用于其他领域,以补充管理过程,但它们几乎没有应用于知识产权领域(Lupu,2017)。在本文中,我们通过制作关于知识产权分析方法和技术的最新文献综述,在解决企业内部不完全采用知识产权分析的问题上做出贡献。

2
研究背景
大数据越来越多地出现在制造和运营的各个领域(OECD,2016)。数据作为这样的数据为实现有竞争力的数据驱动经济提供了价值(EPSRC的2016年交付计划,主题为 “互联互通”(EPSRC,2016b)),这是物联网和工业4.0的核心(EPO,2016)。数据可用性的增加为更好的决策和战略制定提供了机会(EPSRC,2016a),引入下一代创新和颠覆性技术,并通过数字化转型推动业务创新(EPSRC的 "互联国家 "领域(EPSRC,2016c))。
在过去的20年里,专利分析领域有了很大的发展。专利分析描述了分析大量知识产权信息的科学,与其他数据源的关系,以发现关系和趋势(Abbas等,2014;Baglieri和Cesaroni,2013;Moehrle等,2010;Trippe,2003)。随着专利数据的数字化,世界上最大的技术信息库已经可以以快速降低的成本获取。长期以来,专利数据一直被认为是世界上最大的技术信息库,自1984年BACON项目(Dintzner和Van Thieleny,1991)以来,随着专利数据的数字化,以及过去几十年来分析技术的逐步完善,专利数据才越来越多地被非专业观众所获取(Aristodemou等,2017;Raturi等,2010)。随着人工智能(AI)、机器学习(ML)、深度学习(DL)和人工神经网络(ANN)的兴起,出现了许多分析知识产权数据的方法和技术(Abbas等人,2014;Lupu,2017;Oldham和Fried,2016;Trippe,2015)。然而,虽然机器学习和深度学习算法已经广泛地应用于其他领域,以分析大量数据并补充管理流程,但它们几乎没有应用于知识产权领域(Lupu,2017)。
特别是,在我们运行的一项研究中,我们使用技术路线图方法(Phaal等,2012)来探索专利分析的未来(Aristodemou和Tietze,2017)。我们确定了11项优先技术,如人工智能和人工神经网络,这些技术对专利分析领域的采用非常重要(Lupu,2017)。我们还确定了该领域可能取得突破性进展的21个推动因素,这些因素围绕四个主题展开:技术发展周期和方法论;专利数据质量的立法和标准化;持续的专业发展;以及产业界和学术界的合作。由此,我们专注于进一步理解分析技术,具体而言,我们确定了采用这些计算机科学技术技术的需求,以补充决策过程并提供决策支持(Aristodemou等,2017;Lupu,2017)。这与Agrawal等人(2017)提出的命题非常一致,他们认为人工智能可以提高预测能力,从而补充人类在决策中的判断(Ciccatelli,2017;Simmer,2001;Stading,2017a,b)。他们认为,机器

3
预测是对人类判断的一种补充,可以提供一种决策支持(Turban等,2005)。
在本文中,我们通过制作关于知识产权分析方法和技术的最先进的文献综述,在解决企业内部不完全采用知识产权分析的问题(Aristodemou和Tietze,2017)中做出贡献。
研究方法
本文旨在总结该领域的现有工作,特别是涉及机器学习、人工神经网络和人工智能在知识产权领域的应用时(Abbas等,2014;Lupu,2017)。为了进行文献综述,采用了叙述性文献综述法(Cronin等,2008),并制定了研究检索策略(Creswell,2013;Robson,2011)。通过网络检索,对知识产权分析学和专利分析学的文章进行了检索。
研究遵循三个阶段的过程。我们采用问题解决的方法(Alvesson和Sandberg,2011),来确定文献综述的需求。首先,我们通过以下几个方面来确定 prob- lem opportunity:专利分析的未来研究(Aristodemou and Tietze,2017;Aristodemou et al.,2017),以及问题识别(Agrawal et al.,2017;Cooper,2007;Lupu,2017)。其次,我们通过Scopus和Google Scholar搜索最相关的知识产权分析和专利分析的研究工作。我们采用以下关键词的搜索策略缩小论文范围。

  • (TITLE-ABS-KEY("专利 "OR "专利数据 "OR "IP "OR "IP数据 "OR "知识产权 "OR “知识产权数据”)AND("分析 "OR "分析学 "OR "信息学 "OR "分析方法 "OR “信息检索”) AND("专利分析 "OR "专利数据 "OR "Patin- formatics "OR "专利信息学 "OR "专利分析 "OR "知识产权分析 "OR "知识产权分析 "OR "知识产权信息学 "OR "知识产权分析 "OR "知识产权分析 "OR "知识产权信息学 "OR "知识产权信息检索 "OR “专利信息检索”)
    第三,对已发表的研究文章的参考文献列表进行扫描。然后,我们从中选取引用率最高的论文,如Abbas等(2014);Bonino等(2010);Lupu(2013);Moehrle等(2010);Trippe(2003)的论文,并在此基础上对这些论文和引用的论文进行回顾。选取近几年发表的文章,重点介绍基于机器学习和深度学习的知识产权数据分析工具、技术和算法的发展,以呈现知识产权分析方法和技术的讨论。详细介绍这些文章的目的是为了以统一的形式向读者提供知识产权分析的最新研究成果。

知识产权分析学
知识产权分析(IPA)是分析大量知识产权信息的数据科学,以发现数据中的关系、趋势和模式(图1)。它是一门多学科的方法,利用数学、统计学、计算机编程和运筹学,从数据中获得有价值的知识,以推动植根于商业环境的决策。我们使用这个定义,因为IPA没有被广泛接受的定义;然而,这与Patinformatics的定义非常一致(Moehrle等,2010;Trippe,2003)。
图1 关于知识产权分析学定义的位置维恩图
知识产权分析流程
文献中对知识产权分析的过程进行了不同的讨论,主要是围绕专利的分析,因为专利中包含的结构化和非结构化数据的性质。主要是将其看作是人们可以用不同的方法对专利数据进行分析,从而得出有意义的结论的过程。Trippe(2015)创建了WIPO指南,该指南识别并解释了大量关于专利分析的概念以及如何运行不同类型分析的方法。随着最近人工智能的进步,围绕着所涉及的不同方法论,可以应用于知识产权数据,已经有了积极的活动(Aristodemou等人,2017;Lupu,2017)。
大多数文献在商业背景下使用了Moehrle等人(2010)定义的流程(图2),主要包括三个阶段:预处理阶段、处理阶段和后处理阶段。在前处理阶段,收集数据,经过信息提取、清洗和精心准备,目的是为了高质量、正确性和完整性地提供这些数据。在处理阶段,对前处理阶段提取的数据进行分析,采用不同的方法进行分类。
4

5
(a)前处理阶段 (b)处理阶段 ©后处理阶段 图2 专利分析流程,来源:Moehrle等(2010)。Moehrle等人(2010)
群,并从信息中找出有意义的见解。在后处理阶段,也称为发现知识,将处理阶段的结果和信息进行可视化和评估,以支持战略决策。
这与Abbas等(2014)提出的通用专利分析工作流程类似,区别在于所做的每一次分析都有特定的目的(图4)。Raturi等(2010)认为这个过程是对创新周期的补充过程,知识产权数据分析在很多领域都有很多应用。Bonino等(2010)将专利生命周期与专利相关信息源以及专利分析任务沿线的不同任务联系起来。他们认为,专利分析过程是一个目的驱动的过程,它包括检索任务(专利能力、有效性、侵权、专利组合调查、技术调查)、分析任务(微观和宏观的商业价值评估、技术评估和技术建议)和监测任务(早期迹象监测、技术监测、专利组合监测、单项专利监测)。

同样,Baglieri和Cesaroni(2013)认为,专利分析是专利情报支持决策的一种形式。他们认为,专利分析一词有两层含义,一是考虑上述所有因素的过程,二是对专利数据的实际分析。他们以Bonino等(2010)的研究为基础,定义了专利分析的三项任务,即专利检索、专利分析和专利监控,并将这些信息的价值与开放式创新漏斗联系起来(图3)。
图3 创新背景下的专利分析,来源:Baglieri和Cesaroni(2010)。Baglieri和Cesaroni (2013)
知识产权分析方法
有几种分析方法已经被用于知识产权数据,特别是专利数据(Abbas等人,2014;Trippe,2015)。图5显示了已被用于分析知识产权数据的方法或途径。
知识产权数据分析的一种形式是专利数据,其中包含一系列结构化和非结构化数据.Abbas等人(2014)对专利分析技术进行了全面的文献综述,他们区分了文本挖掘和可视化方法以及对结构化和非结构化数据的适用性。由于专利数据本身的性质,主要是图5所示的方法集中在文本挖掘技术周围(Abbas等,2014;Bonino等,2010)。然而,也存在可视化方法,将分析中的模式和信息转化为有意义的见解,以帮助决策(Moehrle等,2010),如图2所示。
NLP关注的是计算机与人类(自然)语言之间的互动,尤其是大型自然语言语料库的处理。它使用计算
6

7
图4 通用专利分析工作流程,来源:Abbas等(2014)。Abbas等人(2014)
语言机制来表示任何文档中发现的文本。NLP已被用于混合结构与书目耦合和文本挖掘,以发现专利检索和分析平台中的模式(Liu等,2011)。Yoon和Lim(2013)通过分析提取的主题-行动-对象(SAO)结构,动态地构建专利地图,以识别技术竞争趋势.Park等人(2013b)利用从专利文献中提取的NLP语言结构中的SAO结构,再次比较TRIZ演化趋势,以评估技术演化。这种方法可以扩展到基于SAO的智能专利分析,专利之间的语义相似性可以在专利地图和专利网络中可视化(Park等人,2013a)。Choi等(2012)利用NLP开发技术树,提取SAO结构,进行专利之间的相似性检测。Park等(2013b)通过使用SAO结构表达技术组件之间存在的关系,计算语义相似性来检测侵权行为。
此外,整合SAO结构和技术路线图方法,利用产品-功能-技术图改善决策。Gerken和Moehrle(2012)利用NLP通过句法分析创建语义SAO结构来识别专利中的新颖性。一些作者利用属性-功能分析,即利用语法分析从专利文件中提取属性和功能,创建专利网络(Dewulf,2013;Yoon和Kim,2012)。
基于规则的方法利用推理和关联规则。Shih等(2010)提出专利趋势变化挖掘,其中有一个变化检测模块,在专利文献中进行关键词搜索可以进行结构提取,将结构和

8
图5 文献中的知识产权分析方法
趋势的提取。Yu和Lo(2009)利用IF-THEN规则结合Kohonen学习算法和第一近邻启发式来规划技术策略。
语义分析是将句法结构,从短语、从句、句子和段落的层次到整个写作的层次,与其语言独立意义联系起来的过程。他们依靠领域知识,建立领域特定概念之间的关系。Lee等(2013)提出利用语义分析和依赖关系进行侵权检测。Wang和Cheung(2011)从专利文献中提取关键概念进行发现,并利用从UTPO数据库中收集的专利文献摘要,利用Naives-Bayes算法对专利文献进行分类。同时,开发多领域的本体可以作为一个集成平台,通过填充本体类来开发知识库(Taduri等,2011)。作者对此进行了扩展,提出了一个基于知识的框架,以方便专利文献的检索(Taduri等,2012)。

9
ANN是一种计算算法,在解决许多复杂的现实世界问题中得到了广泛的应用,主要用于专利数据的分类和技术预测。专利数据主要被用于专利分类和技术预测。Lamirel等人(2003)提出了Kohonen自组织图来进行观点导向分析,对专利文献进行分类。反传播算法也被用于专利文献的分类和建立知识管理技术系统(Trappey等,2005)。为了处理大量的显性知识文档,Trappey等(2006)开发了一种基于神经网络技术的文档分类和搜索方法,帮助企业更有效地管理专利文档。作者将这一研究扩展到基于本体的人工神经网络来对专利文档进行分类(Trappey等,2012)。Lai和Che(2009)基于扩展神经网络结合因子分析,提出了专利货币法律价值的估值模型。Chen等(2013)利用反向传播算法,探讨了美国医药行业发明人数量、专利平均年龄、专利活动年龄对专利引用和企业绩效的非线性影响。Karanikić等(2017)开发并应用极限学习机(ELM),将授权专利作为预测国内生产总值(GDP)增长率的属性之一。Jokanović等人(2017)也采用类似的方法,将专利申请作为输入属性来估计经济发展。
结语
在本文中,我们回顾了知识产权分析方法和技术的文献。虽然有大量关于分析知识产权数据的文献,并部署了几种分析方法(Abbas等,2014),但计算机科学技术、机器学习和深度学习在知识产权领域的应用几乎没有得到应用(Ciccatelli,2017;Lupu,2017;Stading,2017a,b)。我们通过回顾机器学习和人工神经网络方法在分析IP数据中的使用文献做出贡献。此外,我们还通过定义IPA这个术语以及构成IPA的技术、技术和工具,为IPA的理论基础做出了贡献(Aristodemou等,2017);这个定义几乎没有被提出,努力主要集中在专利分析/信息学方面(Bonino等,2010;Moehrle等,2010;Trippe,2003)。这就保证了IPA的产业基础的发展,以及企业如何利用这些基础来增加对知识产权分析的认识。在这一领域还需要进一步的研究,以确定IPA方法在创新过程中的使用案例,并在企业中应用这些方法。

参考文献
Abbas, A., Zhang, L., and Khan, S. U. (2014). A literature review on the state-of-the-art in patent analysis. 世界专利信息》,37:3-13。
Agrawal,A.,Gans,J.,and Goldfarb,A.(2017). How AI Will Change the Way We Make Decisions. 哈佛商业评论,7月:1-7。
Alvesson,M. and Sandberg,J.(2011). Generating Research Questions Through Problematiza- tion. Academy of Management Review,36(2):247-271.
Aristodemou,L. and Tietze,F.(2017). Exporling the Future of Patent Analytics. Technical report, Institute for Manufacturing, University of Cambridge, Cambridge, UK.
Aristodemou,L.,Tietze,F.,Athanassopoulou,N.,and Minshall,T.(2017). Exploring the Future of Patent Analytics: A Technology Roadmapping Approach. In R&D Management Conference 2017, Leuven, Belgium, pages 1-9.
Baglieri,D. and Cesaroni,F.(2013). Capturing the real value of patent analysis for R&D strategies. 技术分析与战略管理,25(8):971-986.
Basheer,I. and Hajmeer,M. (2000). 人工神经网络:基本原理、计算、设计和应用。Journal of Microbiological Methods, 43:3-31.
Bonino, D., Ciaramella, A., and Corno, F. (2010). 专利信息的最先进技术回顾和智能专利信息学的未来发展。世界专利信息,32(1):30-38。
Chen,Y. S.,Tien,W. P.,Chen,Y. W.,Lin,C. C.,and Lee,Y. I. 。(2013). Using artificial neural network (ANN) to explore the influences of number of inventors, average age of patents, and age of patenting activities on patent performance and corporate performance. Proceedings - 2013 4th World Congress on Software Engineering, WCSE 2013, pages 136-139.
Choi, S., Park, H., Kang, D., Lee, J. Y., and Kim, K.(2012). 基于SAO的文本挖掘方法来构建技术规划的技术树。Expert Systems with Applications, 39(13):11443-11455.
Ciccatelli, A. (2017). The Future of Big Data and Intellectual Property.
Cooper,R. G. (2007)。Managing technology development projects. IEEE engineering man-
ment review,35(1):67-77.
Creswell,J. W. (2013). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches. 4th editio edition.

参考文献 11 Cronin,P.,Ryan,F.,和Coughlan,M.(2008)。进行文献综述:一个循序渐进的过程。
办法。17(1):38–43.
Dewulf,K.(2013)。Sustainable Product Innovation: 可持续产品创新:前端阶段的重要性。
的创新过程。In Advances in Industrial Design Engineering, Chapter 7. Dintzner, J. P. and Van Thieleny, J. (1991). 欧洲专利局的图像处理。
欧洲专利局的图像处理:BACON和首页。世界专利信息,13(3):152-154.
EPO(2016). 印度和欧洲探讨工业4.0对专利制度的影响。
技术报告,欧洲专利局,德国慕尼黑。
EPSRC(2016a). Delivery Plan 2016-2020 Top Ten Messages. 技术报告。
EPSRC(2016b). EPSRC Delivery Plan 2016/17-2019/20 Science for a Successful Nation. 技术报告。
EPSRC(2016c). Science Strategy.
Gerken,J. M. and Moehrle,M. G. (2012). A new instrument for technology monitoring: A new instrument for technology monitoring: Novelty in patents measured by semantic patent analysis.
Goffin,K. and Mitchell,R.(2016). Innovation Management: Effective Strategy and Implemen- tation. Palgrave Macmillan.
Ilevbare,I.,Dusch,B.,and Templeton,P.(2016). A framework and methodology for creating business tools. 技术报告。
Jokanovic ́,B.,Lalic,B.,Milovancˇevic ́,M.,Simeunovic ́,N.,and Markovic ́,D.(2017). Eco- nomic development evaluation based on science and patents. Physica A:Statistical Mechanics and its Applications,481:141-145.
Karanikic ́,P.,Mladenovic ́,I.,Sokolov-Mladenovic ́,S.,and Alizamir,M.(2017). Prediction of economic growth by extreme learning approach based on science and technology transfer. Quality & Quantity,51(3):1395-1401.
Lai, Y. H. and Che, H. C.(2009). 延伸神经网络的专利法律价值建模。Expert Systems with Applications,36(7):10520-10528.
Lamirel, J.-C., Al Shehabi, S., Hoffmann, M., and François, C. (2003). 通过使用神经网络进行智能专利分析。 ACL-2003专利语料库处理研讨会论文集-,20:7-23。 Lee, C., Song, B., and Park, Y. (2013). 如何评估专利侵权风险:利用依赖关系进行语义专利权利要求分析. 技术分析与战略管理,25(1):23-38。 Liu, S. H., Liao, H. L., Pi, S. M., and Hu, J. W. (2011). 专利检索与分析平台的开发–一种混合方法. Expert Systems with Applications, 38(6):7864-7868. Lupu, M. (2013). 专利检索》第7卷. 参考文献 12 Lupu, M. (2017). 信息检索、机器学习和自然语言处理。 以获取知识产权信息。 世界专利信息》,49:A1-A3.M. Martinsuo, M. and Poskela, J. (2011). Martinsuo, M. and Poskela, J. (2011). 评价标准的使用和创新绩效 创新的前端。 Journal of Product Innovation Management, 28(6):896-914. Moehrle, M. G., Walter, L., Bergmann, I., Bobe, S., and Skrzipale, S. (2010). 作为业务流程的专利信息学。 通过专利研究任务和工具的指导。 世界专利信息》,32(4):291-299。 经合组织(2016)。 启用下一次生产革命:制造业和服务业的未来–中期报告》。 技术报告6月,经合组织。 Oldham, G. R. and Fried, Y. (2016). 职务设计研究与理论。 过去、现在和未来。 Organizational Behavior and Human Decision Processes, 136:20-35. Park, H., Kim, K., Choi, S., and Yoon, J. (2013a). 一种用于战略技术规划的专利情报系统. Expert Systems with Applications, 40(7):2373-2390. Park, H., Ree, J. J., and Kim, K. (2013b). 利用TRIZ演化趋势识别有前景的技术转让专利. Expert Systems with Applications, 40(2):736-743. Phaal, R., Routley, M., Athanassopoulou, N., and Probert, D. (2012). 绘制新兴技术的开发策略. 研究-技术管理,55(2):34-42。 Raturi, M. K., Sahoo, P. K., Mukherjee, S., and Tiwari, A. K. (2010). Patinformatics–一门新兴的科学学科。 Robson, C. (2011). 真实世界的研究。 版。 布莱克威尔出版公司。 Malden, pages 1-608. Shih, M. J., Liu, D. R., and Hsu, M. L. (2010). 通过挖掘发现竞争情报 专利趋势的变化。 Expert Systems with Applications, 37(4):2882-2890. Simmer, R. (2001). 使用知识产权数据进行竞争情报。 温哥华。 University of British Columbia, pages 1-12. Stading, T. (2017a). The Role of Artificial Intelligence in Intellectual Property. Stading, T. (2017b). 利用大数据使知识产权成为战略武器。 Taduri, S., Lau, G. T., Law, K. H., and Kesan, J. P. (2012). 专利系统本体论促进专利相关信息的检索。 Proceedings of the 6th International Conference on Theory and Practice of Electronic Governance - ICEGOV '12, page 146. Taduri, S., Lau, G. T., Law, K. H., Yu, H. and Kesan, J. P. (2011). 为美国专利系统开发本体论。 In Proceedings of the 12th Annual International Digital Government Research Conference on Digital Government Innovation in Challenging Times - dg.o '11, page 157. Trappey, A., Lin, S. and Wang, A. (2005). 利用神经网络分类方法开发专利文献分类的创新知识管理技术. 第九届国际计算机支持设计合作工作会议论文集,2. 参考文献. 13 Trappey, A. J., Trappey, C. V., Wu, C.-Y., and Lin, C.-W… (2012). 创新技术与产品开发的专利质量分析. Advanced Engineering Informatics, 26(1):26-34. Trappey, A. J. C., Hsu, F. C., Trappey, C. V. and Lin, C. I. (2006). 利用反向传播网络开发专利文献分类与检索平台. Expert Systems with Applications,31(4):755-765. Trippe, A. (2015). 编写专利状况报告的指南。 技术报告,世界知识产权组织。 Trippe, A. J. (2003). Patinformatics。 从任务到工具. 世界专利信息,25(3):211-221. Turban, E., Aronson, J. E., and Liang, T.-P. . (2005). 决策支持系统和智能 系统。 Prentice-Hall,7th editio edition. 王伟明和张志辉(2011)。 支持专利分析的基于语义的知识产权管理系统(SIPMS). 人工智能的工程应用,24(8):1510-1520。 Yoon, J. and Kim, K. (2012). TrendPerceptor。 A property-function based technology in- telligence system for identifying technology trends from patents. Expert Systems with Applications, 39(3):2927-2938. Yoon, J. H. and Lim, S. S. (2013). 关税率配额计划下国营贸易企业的潜在贸易扭曲效应. 经济学》,7:0-20。 俞文德和罗小山(2009)。 基于专利分析的技术战略规划模糊推理系统. Automation in Construction,18(6):770-776.

Ecosystem Strategy in Technology Licensing
Mingjin Guo (CTM, University of Cambridge)
Xianwei Shi (CIM, University of Cambridge)
Frank Tietze (IfM, University of Cambridge)

The last few decades have witnessed a significant increase in licensing. Firms usually license in or out patents for technology acquisition or exploitation and other strategic purposes. Although literature has discussed the optimal licensing strategy for patent holders, the value of the technology is not completely exploited due to a few reasons. One of the challenges results from the presence of innovation ecosystem, where complementors have great impact on both licensors’ and licensees’ product performance. In this paper we focus on licensors’ ecosystem strategy, i.e. engaging complementors, in their licensing scenarios. By mathematical proof in an extended model based on the literature, we find that involving complementors is profitable for licensors, but involving too many would cause decrease in the profitability. We also conclude that the relative position of the licensor in the licensing competition (i.e. relative numbers of licensees) is the key to determine its ecosystem strategy. When the licensor licenses less aggressively than its competitors and has small transaction cost with complementors, involving complementors is a supportive strategy to its existing licensing strategy. However when the licensor is licensing more than others, engaging complementors would be unfavourable.

Keywords: Licensing strategies, patents, complementors, ecosystems

Centre for Technology Management working paper series
ISSN 2058-8887
No. 1 June 2017
ECOSYSTEM STRATEGY
IN TECHNOLOGY LICENSING
https://doi.org/10.17863/CAM.10954
Mingjin Guo (CTM, University of Cambridge) * Xianwei Shi (CIM, University of Cambridge) Frank Tietze (CTM, University of Cambridge)

  • Please contact the corresponding author for feedback: mg720@cam.ac.uk
    This paper has been accepted to the Academy of Management 2017 (Atlanta, US) and also been presented at the International Doctoral Student Conference 2017 (Zhejiang University, China)
    Centre for
    Technology Management

Ecosystem Strategy in Technology Licensing
Mingjin Guo, Xianwei Shi, Frank Tietze
ABSTRACT
The last few decades have witnessed a significant increase in licensing. Firms usually license in or out patents for technology acquisition or exploitation and other strategic purposes. Although literature has discussed the optimal licensing strategy for patent holders, the value of the technology is not completely exploited due to a few reasons. One of the challenges results from the presence of innovation ecosystem, where complementors have great impact on both licensors’ and licensees’ product performance. In this paper we focus on licensors’ ecosystem strategy, i.e. engaging complementors, in their licensing scenarios. By mathematical proof in an extended model based on the literature, we find that involving complementors is profitable for licensors, but involving too many would cause decrease in the profitability. We also conclude that the relative position of the licensor in the licensing competition (i.e. relative numbers of licensees) is the key to determine its ecosystem strategy. When the licensor licenses less aggressively than its competitors and has small transaction cost with complementors, involving complementors is a supportive strategy to its existing licensing strategy. However when the licensor is licensing more than others, engaging complementors would be unfavourable.
Keywords: Innovation Ecosystem; Ecosystem Strategy; Licensing; Market for Technology
1

INTRODUCTION
Licensing has been used extensively in the industry as a means of technology acquisition or exploitation for many years (Kamiyama et al. 2006). The last decades have witnessed a dramatically growing trend in licensing especially in technology-intensive industries, such as semi-conductor and pharmaceutical industries (Grindley & Teece 1997; Allarakhia & Walsh 2011). Firms with innovations even license their patented technologies out to potential competitors. Traditional explanation for this is that firms lack the capability to commercialize and exploit their technologies compared with their licensees (Arora & Ceccagnoli 2006), such as most start-ups with only patents. However, evidence from large firms’ aggressive licensing behaviour indicated that licensing has been used strategically even though these firms possess the capabilities to utilise their technologies (Rivette & Kline 2000). In this scenario, firms license for various strategic purposes: to increase demand, to deter entry or to choose competitors (Gallini 1984; Shepard 1987; Rockett 1990). Our paper is related more to the latter scenario, where licensors may still have easier access to complementary assets than their licensees.
Numerous studies have discussed the optimal licensing strategy for patent holders (Katz & Shapiro 1986; Arora & Fosfuri 2003). Nowadays, the new task faced by licensors is how to maximize value exploited from their technologies in the existing licensing network. There are several reasons for insufficient rent exploitation, including transaction cost of licensing contracts (Caves et al. 1983), asymmetric information (Gallini & Wright 1990), and weak intellectual property rights protection (Gallini 1992).
In addition to these, the presence of innovation ecosystems nowadays and high technological interdependence between different industrial players (Adner & Kapoor 2010) also pose a challenge on licensees’ rent generation of the technology and further on licensors’ profitability. The concept of innovation ecosystem has received increasing attention in recent years (Adner 2006; Adner 2016; Kapoor & Lee 2013). It highlights the interaction between firms that are technologically connected and especially the strategic importance of complementors, which we will illustrate later in the theory section (Adner & Kapoor 2010). Adner and Kapoor (2010) argued that complementors in an innovation ecosystem impact the focal firm’s performance in creating value of their products. Therefore, in a licensing contract, one can see that even with higher capability to commercialize the technology than the licensor, the licensee still risk the inefficiency of capturing value from the licensed technology. This may result from failing to identify potential complementors or acquiring additional complementary technologies. The same logic applies to the licensor that is also involved in the product market. In summary, the licensor should pay attention to the ecosystem strategy in its licensing activity to deal with this challenge.
Hence, this paper mainly focuses on the ecosystem strategy for licensors if they wish to mitigate the ecosystem challenge and maximise the rent of their licensing contracts. Here ecosystem strategy mainly refers to engaging complementors strategically. The paper
2

discusses the following issues for the licensor: 1) whether introducing complementors into its licensing framework brings more profit to itself; 2) when to engage and how many (roughly) complementors to engage, and how asymmetry of the licensing market influence this. The study on the second issue leads to further discussion on when ecosystem strategy acts as a complementary strategy to firm’s licensing strategy and when as a conflicting strategy. We examine our propositions using an extended analytical model based on Arora and Fosfuri’s (2003).
The paper is structured as follows: theory of market for technology and innovation ecosystem that this paper is based on will come first. Then the method part mainly presents the analytical model, including its conceptual background and the mathematical part followed by the solution. The findings&discussion part constitutes the core of the paper, which will present our propositions followed by corresponding proof and discussion. Finally, we bring our findings together and conclude the paper with limitations and future work.
THEORY
Theory on technology licensing
Existing literature on firms’ licensing mainly focus on two aspects: incentives for licensing behavior and licensing strategy. In terms of motivation, companies license patents mainly for technology acquisition (license in) or exploitation (license out) (Lichtenthaler 2005). It is also believed that license strategy is an effective way for firms to access complementary assets, which are crucial for them to appropriate value from their innovation (Arora & Ceccagnoli 2006; Teece 1986). Especially for firms with large manufacturing capability but fewer technologies, they will license in technologies actively (Teece 1998). In addition, existing literature has also tried to discuss the incentives of licensing from the economic perspective. Before we talk about research specifically on licensing, literature has argued that delegation or franchise helps retailers to exploit their surplus in a vertical market and deter entry (Vickers 1985; Bonanno & Vickers 1988; Hadfield 1991; Gallini 1984). Researchers also argued that licensors treat licensing as a strategy to enhance demand and therefore maximize profits from the proprietary product (Shepard 1987). Rockett (1990) showed that licensing is a way of selecting competitors after the patent expires (Rockett 1990).
Regarding the discussion on licensing strategy, a number of studies have tried to study the influence of some determinants on firms’ licensing propensity. Pitkethly mainly discussed different licensing strategies with different levels of strategic appropriability, legal appropriability and access to complementary assets. Arora and Ceccagnoli (2006) investigated the relationship between the effectiveness of patent protection and firms’ propensity of licensing. They found that when firms possess specialised complementary assets for technology commercialisation, the increase of the effectiveness of patent protection will result in the increase of patenting propensity and the drop in license propensity; when firms lack specialised complementary assets, the increase of this determinant will lead to the increase of licensing propensity. Therefore, the effectiveness of IP protection was proved to be a key determinant of IP strategy (patenting or licensing), with the ownership of specialised complementary assets having a mediating effect (Arora & Ceccagnoli 2006).
3

Motohashi (2008) further illustrated the influence of firm size on license strategy decisions using empirical data from Japanese companies. A few researchers focused on the characteristics of knowledge and technology and discussed their impact on licensing behavior. Alexy et al. mainly discussed the impact of knowledge distribution and technological environment (Alexy et al. 2009). Allarakhia and Walsh focused on the features of knowledge such as complementarity and substitutability (Allarakhia & Walsh 2011).
In addition to the study on determinants in the management literature, economic research mainly focused on the optimal licensing strategy. Gallini and Wright (1990) discussed the optimal licensing contract design under asymmetric information scenario between licensors and licensees (Gallini & Wright 1990). Katz and Shapiro (1986) showed the licensing behavior for a monopolist innovator that is not engaged in the product competition (Katz & Shapiro 1986).
This paper is based on the theory of market for technology that was proposed by Arora et al (2001). They applied the term ‘market’ in the economic area that usually refers to the product market, into the competition where technology is the ‘product’. The theory of market for technology contributes to the economics of intellectual property. For most of the time, technology itself cannot be flexibly transferred in the market, while the property rights – patents – enable firms to transfer their technologies and exploit the rent through licensing or selling. After the concept ‘market for technology’ was built, one can study the licensing activity through a multistage market structure, including the market for technology and the common market for product. In addition, one can discuss a variety of issues such as transaction cost, rent of innovation etc. in the technology market. Arora et al. (2001) also suggested that the presence of market for technology expands the firms’ strategic space. This includes a variety of strategic choices within the licensing scope, such as licensing in or out, the extent of licensing etc., and other technology acquisition and exploitation strategies (Arora et al. 2001).
With this conceptual foundation Arora and Fosfuri (2003) further proposed an analytical model that explained innovators’ licensing strategy in a technology market. They regarded licensing as ‘a credible commitment to expand production by transferring the output decision to the licensees’. Their model relaxed the assumption of a single monopolist technology holder in the licensing market and discussed the scenario where more than one patent holder exists. Through mathematical solution, the model further showed why firms license their technologies to potential competitors. They argued that the degree of competition in the product market is one of the keys. Also, they showed that the optimal number of licensees for a technology holder is influenced by the competition in the technology market, transaction cost and the degree of product differentiation (Arora & Fosfuri 2003).
In this paper, we base on the model proposed by Arora and Fosfuri (2003) and propose our extended model that involves complementors in the innovation ecosystem. Note that our focus is not on the licensing strategy with complementors involved, but rather the ecosystem strategy (engaging complementors) under this licensing framework. This attempt is important because for a product manufacturer (licensee), only a single contract for a single technology does not fit the reality, which was also noted as limitation of their model in Arora and Fosfuri’s paper (2003). A single product usually involves different technologies and there exists great
4

interdependence among these technologies (Adner & Kapoor 2010). Therefore, as licensors, the technology holders can seek new strategic choices in their innovation ecosystem to exploit the profit from licensing the technology.
Innovation Ecosystem
Inspired from ecological research, Moore first introduced business ecosystem as “an economic community supported by a foundation of interacting organizations and individuals” (Moore 1993, 1996, 2004). The ecosystem thinking, describing business networks where interconnected and interdependent organisations interact and engage with each other (Iansiti & Levien 2004a, 2004b; Iansiti & Richards 2006), has since then introduced into different domains, thereby forming different ecosystems addressing different issues, such as innovation ecosystems (Adner 2006; Adner & Kapoor 2010) and entrepreneurial ecosystems (Cohen 2006; Nambisan & Baron 2013).
The ecosystem we refer to in this paper stems from Adner’s innovation ecosystem, which addresses the critical importance of complementors (Adner 2006) – a distinctive component beyond traditional dyadic relationships in supply chains or networks (Davis 2016), as illustrated in Figure 1. Adner argues that success of focal firms’ innovation is contingent on the complements provided by complementors in the downstream due to technological interdependence (Adner 2012). Without the latter, focal firms’ new offerings are likely to fail even with excellent ideas and implementation capabilities. In other words, focal firms’ innovation can be utilised by customers to its full potential only when compliments are present and bundled (Adner 2006).
Figure 1. The innovation ecosystem schema (Adner & Kapoor, 2010)
Empirical research based on global semiconductor lithography equipment industry reveals that the innovation bundles that integrate the complementors’ innovations with their own products are of vital importance for focal firms to be successful in the market (Adner & Kapoor 2010). They argue that “greater upstream innovation challenges in components enhance the benefits that accrue to technology leaders, while greater downstream innovation challenges in complements erode these benefit” (Adner & Kapoor 2010). Based on their
5

innovation ecosystem framework, further studies have revealed how alliances with complementors will affect focal firms’ technological investment choices (Kapoor & Lee 2013) and how the pace of technology substitution is contingent on the ecosystem challenges for new technologies and ecosystem extension for older ones (Adner & Kapoor 2015).
Ecosystem Strategies
Though researchers still have not reached an agreement on what exactly ecosystem strategy is, the basic idea of implementing ecosystem strategies is to nurture an ecosystem if not existed and necessary. Rong and Shi (2014) has identified the nurturing patterns and processes where a set of partners coevolve along the process (Gawer & Cusumano 2013; Rong & Shi 2014). The co-evolutionary process, orchestrated by the ecosystem leaders, will grow the whole ecosystem from scratch and build up competitive advantages (Liu & Rong 2015). Thomas and Autio also proposes some key dimensions to create an ecosystem such as manipulating shared vision/perception of ecosystem standards, and manipulating normative forces (Thomas & Autio 2015; Autio & Thomas 2016)
But is it actually beneficial for firms to implement ecosystem strategies? For focal firms, implementing an ecosystem strategy could be beneficial just as implementing a traditional strategy. Adner argues that, if traditional strategies are searching for building competitive advantages of the firms, ecosystem strategy is searching for the value co-creation alignment and then forming the innovation alignment of partners (Adner 2017). In so doing, the focal firm could increase the competitiveness of their ecosystem, which can further increase their own market share and profit (Iansiti & Levien 2004b).
In summary, although previous literatures have established models that explain the licensing strategies in the market for technology and the optimal scenarios to compete in the market for product, relatively less is known about how the technology holder could increase its profit in an innovation ecosystem context. The innovation ecosystem context is of relevance in that simple dyadic buyer-supplier relationships between technology holders and licensees in the previous model settings are replaced by triadic relationships (Davis 2016) between technology holders, complementary technology holders and licensees. Technology holders’ technologies alone simply are not enough for downstream firms to ensure their success in the product market. Instead, they must be accompanied by complementors – in this paper, the complementary technology holders in the market for technology. This qualitative difference will change technology holders’ strategic decisions under a variety of uncertainties, which we will quantify in our model.
Thus, we have laid down theoretical foundations for our modelling and illustrates the gap in this domain, which helps formulate our research question: ‘How can licensors engage complementors in the innovation ecosystem as a complementary strategy with its existing licensing scenario?’
METHOD
The conceptual framework
Our conceptual framework is based on the scenario that Arora and Fosfuri (2003) describe.
6

We however advance their scenario by employing complementors into the technology market as complementary patent providers. The framework is shown in Figure 2.
Market for technology
engage
Market for product
Products i i=(1,2,3,…,N)
complementors
m
license
patent holders i
produce
produce
license ki-1
followers (licensees)
Figure 2. The scenario of the model
Consider a vertically linked market where two stages are involved. The first stage is the market for technology, where technology with patents is main product type and is transferred through licensing contracts. In fact, there are forms other than technology such as know-how and they may flow in other ways. Here we only focus on the licensing activity. Based on Arora and Fosfuri’s model (2001), we also assume there are N companies in this market that developed technologies independently and own patents, called technology/patent holders (or innovators). Each of them licenses their technology to a number of licensees (or followers/new entrants) that have not the necessary developed technologies but possess the capability to manufacture products. Both innovators and new entrants use these technologies to produce goods. We also consider the situation that innovators only license but do not get involved in the product market. Hence we use the dash line to between innovators and the product.
What we add here is the activity of complementors. To study the ecosystem strategy for the patent holder, we assume that patent holder i intentionally engage complementors and partner with them. These complementors therefore license the complementary technologies to firm i’s licensees. Thus with more complementary technologies these licensees produce good i of improved quality. One can say that licensees can sign the licensing contracts with complementors themselves. However this may be not always the case. Licensees may fail to do that due to a few reasons. The licensee may not be aware of potential added value of applying the complementary technology into its product. Also, there may be high transaction cost or low bargaining power on the licensee side.
The second stage is the market for product. There are N varieties of goods in the competition. For one of the varieties good i (i=1,2,3,…,N), it is produced with technology i and its related complementary technologies by technology holder i (probably) and its 􏰀􏰁 − 1 licensees. These varieties of products can be homogenous or differentiated. Competition in
7

this market follows Cournot competition.
Arora and Fosfuri (2003) use two important concepts that describe the effects of licensing
impose on the profits of licensors: revenue effect and rent dissipation effect. The revenue effect is positive, which refers to the licensing fees that licensors earn from licensees. The rent dissipation effect indicates the negative effect on profits of licensors due to increased competition in the product market caused by licensees. Arora and Fosfuri (2003) argue that the key to determine firm’s licensing strategy is whether the revenue effect dominates the rent dissipation effect. In our model, the two concepts are also important because they help us understand the logic of employing ecosystem strategy. From the following discussion in Findings&Discussions we can see that ecosystem strategy has a mediating effect on these two effects, and therefore influences firms’ profitability.
The analytical model
Based on the conceptual framework above, in the following we present our mathematical model. Like the conceptual framework, we also base our analytical model on Arora and Fosfuri’s (2003). We use the same signs to denote variables. Assume that the number of patent holders is N. For one of them, firm i (i=1,2,3,…,N) licenses its technology i to 􏰀􏰁 − 1 followers. Since our focus is on the ecosystem strategy, we assume that firm’s licensing strategy has reached the optimal level at the equilibrium and will not change in the short term. Hence in our model 􏰀􏰁 − 1 is a given number. Hence in the product market there are 􏰀􏰁 firms producing good i, and there are ∑􏰂􏰁􏰃􏰄 􏰀􏰁 firms in total competing in the product market. As a complementary strategy, firm i engages m complementors and these complementors provide complementary licenses to the 􏰀􏰁 − 1 licensees. What we mean by ecosystem strategy in this model is reflected in the value of m. N, m and 􏰀􏰁 − 1 are all continuous numbers.
Same as Arora and Fosfuri’s model (2003), we assume that the licensing fee is paid through a lump sum payment of a non-exclusive contract. The proportion of licensing payment in the profits earned by licensees is assumed to be 􏰅.
As Teece (1997) argues, transferring technology involves transaction cost that sources from incomplete contracts, transaction-specific investments and leakages of valuable proprietary information (Teece 1977). We follow the assumption of Arora and Fosfuri (2003) that transaction costs is composed of a fixed F and a variable part that is proportional to the rent generated by the use of the technology. According to Arora and Fosfuri’s discussion, we know that this proportion is 1 − σ and is already embodied in the profit that the licensor earn from the total licensing contract.
We assume the degree of product differentiation among goods i (i=1,2,3,…,N) is captured by μ ∈ [0,1]. When μ = 1, all goods are homogenous; when μ = 0, all goods are completely differentiated.
In the following we discuss the complementor part. Based on the ecosystem theory, complementors’ involvement increases the degree of product differentiation. To make the case simple, we assume this effect to be linear, with ∆􏰆 denoting the marginal effect on 􏰆 when involving one more complementor. Hence the degree of product differentiation is 􏰆 −
8

∆􏰆 ∙ 􏰇 when involving m complementors. In addition, on the technology holder’s side, engaging complementors involves transaction cost. We assume this to be fixed cost F􏰈.
The analysis process is similar to Arora and Fosfuri’s, which is divided into two stages: competition in the product market and competition in the technology market. Here we only briefly outline the process.
Competition in the product market
The inverse demand function for good i is:
􏰉 =1−∑􏰋􏰌􏰊 −(􏰆−􏰇∆􏰆)∑ ∑􏰋􏰎􏰊 (1)
􏰁 􏰄 􏰁 􏰍􏰏􏰁 􏰄 􏰍
where i=1,2,3,…,N, j=1,2,3,…,N and j ≠ i. p􏰐 refers to the price of good i, x􏰐 and x􏰑 are
equilibrium quantities of goods i and j respectively. Hence ∑􏰒􏰓 x stands for the summation of 􏰄􏰐
quantities of good i supplied by k􏰐 firms (including the patent holder and its licensees). From (1) one can solve (p􏰐, x􏰐) at the equilibrium point and derive the profits π􏰐 = p􏰐x􏰐.
Therefore, profits earned by each firm with technology i in the product market is:
􏰔􏰁􏰕􏰀􏰁, 􏰀􏰍, 􏰆, ∆􏰆, 􏰖, 􏰇􏰗 = 􏰘􏰙􏰚􏰛􏰙􏰚 (2)
where 􏰘=1+(1−􏰆+∆􏰆􏰇)􏰀􏰁 and 􏰛=1+∑􏰂􏰍􏰏􏰁(􏰆−􏰇∆􏰆)􏰀􏰍/(1+(1−􏰆+􏰇∆􏰆)􏰀􏰍). Competition in the technology market
For technology holder i, the total profits earned from its product and licensing is:
􏰜􏰁 = [1 + 􏰅(􏰀􏰁 − 1)]􏰔􏰁􏰕􏰀􏰁,􏰀􏰍,􏰆,∆􏰆,􏰖,􏰇􏰗 − (􏰀􏰁 − 1)􏰝 − 􏰇􏰝􏰈 (3) where [1 + 􏰅(􏰀􏰁 − 1)]􏰔􏰁􏰕􏰀􏰁, 􏰀􏰍, 􏰆, ∆􏰆, 􏰖, 􏰇􏰗 refers to the profits earned by its own
production and licensing fees, (􏰀􏰁 − 1)􏰝 refers to the transaction cost with licensees, and mF􏰈 stands for the transaction cost with complementors.
We have finished the modification of the basic functions from Arora and Fosfuri’s model (2003) under our new framework. We present findings and discussions in the next section. Instead of focusing on number of licensees 􏰀􏰁, we focus on the influence of complementors and the number of complementors. Thus our discussion will start from 􏰆 and m.
FINDINGS & DISCUSSIONS
Impact of Engaging Complementors on Profitability
Before we dive into details, we first examine whether it is profitable to involve complementors. As stated in the theory part, based on previous literature on innovation ecosystems (Adner & Kapoor 2010, 2015; Adner 2012), we assume that complementors’ participation in innovation ecosystems affects the degree of product differentiation in the product market. In other words, the more complementors in the market for technology license their technologies to the same licensees as the focal firm do, the higher degree of product differentiation will be achieved in the market for product.
In this section to make the problem simple, we assume 􏰝􏰈 = 0 in Expression (3). Hence, one can study the influence of complementor participation by examining the impact of 􏰆 on profit 􏰜􏰁. Our first proposition is:
9

Proposition 1a: in a homogenous product market, where two technology holders license their technologies to the licensees and are also involved in the product market, either firm
could increase its profit by engaging 􏰇 ∈ [1, 􏰄􏰙􏰞􏰟] complementors in their licensing deals. ∆􏰞
Proof. Assume that now there is no complementor participating. Therefore Expression (2) and (3) can be written as
􏰔􏰁􏰕􏰀􏰁, 􏰀􏰍, 􏰆, 􏰖􏰗 = [1 + (1 − 􏰆)􏰀􏰁]􏰙􏰚􏰠1 + ∑􏰂􏰍􏰏􏰁 􏰆􏰀􏰍/(1 + (1 − 􏰆)􏰀􏰍)􏰡􏰙􏰚 (4) 􏰜􏰁 = [1 + 􏰅(􏰀􏰁 − 1)]􏰔􏰁􏰕􏰀􏰁,􏰀􏰍,􏰆,􏰖􏰗 − (􏰀􏰁 − 1)􏰝 (5)
Now, the inclusion of complementors will add to the product differentiation, which means 􏰆 will decrease when complementary technologies have been licensed to the licensees in the product market. Since we are keen to know to what extent the complementors’ participation will affect the profit function of the focal firm, we now work out the first order derivative for 􏰜􏰁 in terms of 􏰆.
Consider a simple scenario where 􏰖 = 2 (we do not consider the scenario of 􏰖 = 1 because results from previous literatures suggest that the singletechnology holder should not license their technology), which means the market for technology is duopolistic (two technology holders firm 1 and 2, one can have
􏰢􏰣􏰤 =[1+􏰅(􏰀 −1)][1+(1−􏰆)􏰀 ]􏰙􏰥􏰚[􏰄􏰦(􏰄􏰙􏰞)􏰋􏰟]∅ (6) 􏰢􏰞􏰄 􏰄(􏰄􏰦􏰋􏰟)􏰟
where ∅ = 􏰆[1+(1−􏰆)􏰀􏰄]−􏰀􏰚[1+(1−􏰆)􏰀􏰚]
Now, one can obviously tell [1 + 􏰅(􏰀 − 1)][1 + (1 − 􏰆)􏰀 ]􏰙􏰥 􏰚[􏰄􏰦(􏰄􏰙􏰞)􏰋􏰤] > 0. Hence, we
􏰄 􏰄 (􏰄􏰦􏰋􏰟)􏰟 are concerned with ∅’s monotonicity and one can have
∅=−􏰀􏰚􏰆􏰚 +(1+􏰀􏰚 +􏰀􏰄􏰀􏰚)􏰆−􏰀􏰚(1+􏰀􏰄) (7) It is obvious that ∅ is a parabola open downwards, with roots between (0, 1). One can find
the roots for ∅, which are also the roots for 􏰢􏰣􏰤: 􏰢􏰞
􏰆􏰄 = 􏰄􏰦􏰋􏰟􏰦􏰋􏰤􏰋􏰟􏰙􏰧(􏰄􏰦􏰋􏰟􏰦􏰋􏰤􏰋􏰟)􏰟􏰙􏰨􏰋􏰟􏰟(􏰄􏰦􏰋􏰟) (8) 􏰚􏰋􏰟
􏰆􏰚 = 􏰄􏰦􏰋􏰟􏰦􏰋􏰤􏰋􏰟􏰦􏰧(􏰄􏰦􏰋􏰟􏰦􏰋􏰤􏰋􏰟)􏰟􏰙􏰨􏰋􏰟􏰟(􏰄􏰦􏰋􏰟) (9) 􏰚􏰋􏰟
Hence, when 0 < 􏰆 < 􏰆􏰄 􏰩􏰪 􏰆􏰚 < 􏰆 < 1, the profit function is decreasing on 􏰆.
This result has two implications. First, when complementors are introduced, 􏰆 starts to decrease from 1 and therefore 􏰜􏰄 increases, until 􏰆􏰚, where 􏰜􏰄 reaches the maximum. This implies that, in a homogenous product market, where two firms 1 and 2 license their
10

technologies and are also involved in the product market, firm 1 could increase its profit by engaging a reasonable number of complementors in their licensing deals with licensees in the product market. The number of complementors 􏰇 can be easily derived as
􏰇=1−􏰆􏰚 ∈[1,1−􏰆􏰚] ∆􏰆 ∆􏰆
where ∆􏰆 is the incremental unit per complementor involved. Hence, we have the following proposition.
Proposition 1b: in a homogenous product market, where two technology holders license their technologies to the licensees and also produce the same products in the product market,
firm’s profit could decrease if the firm engages more than 􏰄􏰙􏰞􏰟 complementors in their ∆􏰞
licensing deals.
Proof. When the degree of product differentiation reaches 􏰆􏰚, technology holder’s profit
starts to decrease until 􏰆􏰄, and then increase until 0. In reality, 􏰆 cannot be zero as the two
products cannot be completely different even if introducing considerable number of
complementors. In fact, even if we assume 􏰆 = 0, where 􏰜􏰄 reaches the other possible
maximum value 􏰜􏰄 􏰞􏰃􏰫
􏰜􏰄 = (1+􏰀 )􏰙􏰚(1+􏰀 )􏰙􏰚[1+􏰅(􏰀 −1)]−(􏰀 −1)􏰝 (10) 􏰞􏰃􏰫 􏰄 􏰚 􏰁 􏰄
This value is even smaller than 􏰜􏰄 􏰞􏰃􏰄
􏰜􏰄 =(1+􏰀 )􏰙􏰚[1+􏰅(􏰀 −1)]−(􏰀 −1)􏰝 (11) 􏰞􏰃􏰄 􏰚 􏰁 􏰄
Hence, if too many complementors are involved in the licensing deals, the technology holder’s profit could decrease and it can even be smaller than the initially homogenous product market.
We suspect that the decrease in profit after 􏰆􏰚 is due to the increase of equilibrium price in the product market is slower than the increase of quantity if too many complementors are introduced. This implies that, for the technology holder, involving too many complementors could decrease the profit. Therefore, one can find that 􏰆􏰚 is the optimal point for technology holders to get the maximum profit through engaging complementors in licensing their technologies.
We now consider the scenario where technology holders are not involved in the product market, i.e. they adopt a license-based business model.
Proposition 1c: in a homogenous product market, where two technology holders only profit from licensing their technologies to the licensees, either firm could increase its profit by
engaging 􏰇􏰈 ∈ [1, 􏰄􏰙􏰞􏰟􏰬 ] complementors in their licensing deals. ∆􏰞
Proof. The profit function for technology holders will then be 11

􏰜􏰁 =􏰅(􏰀􏰁 −1)􏰔􏰁􏰕􏰀􏰁 −1,􏰀􏰍 −1,􏰆,􏰖􏰗−(􏰀􏰁 −1)􏰝 (12)
A close examination will easily prove that the result in the last section still holds in this scenario. In other words, if the technology holder is purely profiting from licensing their technologies, engaging complementors in an originally homogenous product market will increase their profit. The new optimal point 􏰆􏰚􏰈 and number of complementors 􏰇􏰈will be
􏰆􏰚􏰈 =􏰀􏰚 +(􏰀􏰄−1)(􏰀􏰚 −1)+􏰭[􏰀􏰚 +(􏰀􏰄 −1)(􏰀􏰚 −1)]􏰚 −4􏰀􏰚(􏰀􏰚 −1)􏰚 2(􏰀􏰚 − 1)
􏰈 1 − 􏰆 􏰚􏰈 1 − 􏰆 􏰚􏰈 􏰇 = ∆􏰆 ∈[1, ∆􏰆 ]
The above results have strong practical implications: if we ignore the licensing asymmetry (the relative value of 􏰀􏰄 and 􏰀􏰚), engaging a certain number of complementors and nurturing ecosystems will benefit the technology holders regardless of their business model – either licensing only or licensing plus manufacturing their own products.
An excellent example would be ARM. The microprocessor industry, where ARM finds itself, is highly disintegrated and was fragmented. Initially, there are multiple technology holders including ARM and Intel in this industry. The business models of these holders are different. For example, Intel manufactures their own processors besides licensing. ARM, however, has adopted a pure license-based business model since the beginning – it only profits from licensing the ARM architectures to microprocessor OEMs who will design and manufacture the processors using ARM’s technology. These processors will then be embedded by mobile device OEMs in smartphones and tablets. In other words, ARM does not involve in the product market and only focuses on the market for technology.
The reason why ARM could stand out has largely been attributed to their ecosystem strategy (Garnsey et al. 2008; Rong et al. 2015; Liu & Rong 2015). It was found that there were difficulties for some processor OEMs, especially those smaller ones, to successfully design their products with ARM’s architectures alone, in which case some complementary technologies need to be used such as EDA (Electronic Design Automation). ARM has proactively approached and collaborated with some of these complementors, who can help processor OEMs to design their system on chips (SoC). This ecosystem strategy has greatly expanded ARM’s market and increased its profit. By now, ARM has become one of the two giants (the other is Intel) in microprocessor industry and particularly dominated the mobile device microprocessor market for technology.
In the following part we link ecosystem strategy with firms’ existing licensing strategy, and see how the licensing scenario impacts licensors’ ecosystem strategy. We consider a more complete situation with transaction cost of engaging complementors 􏰝􏰈 > 0. .
Engaging complementors and the asymmetry of the licensing scenario
Now we consider the effect of asymmetry in the licensing market on firm’s ecosystem strategy. Let 􏰝􏰈 > 0, and therefore profit of the patent holder is given by Expression (3).
12

We consider the situation that before involving their complementors, now N technology holders have reached the equilibrium in terms of licensing strategy. This means for technology holder i (i=1,2,3,…, N), 􏰀􏰁 and 􏰀􏰍 are given numbers. Now technology holder i is considering whether to involve complementors to increase the profitability and how many they should involve. Therefore we discuss the derivative of 􏰜􏰁 with respect to 􏰇.
􏰜 􏰮 􏰁 = [ 1 + 􏰅 ( 􏰀 􏰁 − 1 ) ] 􏰔 􏰮􏰁 − 􏰝 􏰈 ( 1 3 ) where 􏰔􏰮􏰁 = 􏰯(􏰰􏰱􏰟􏰲􏰱􏰟) = −2􏰘􏰙􏰚􏰛􏰙􏰚(􏰘􏰙􏰄 􏰯􏰰 + 􏰛􏰙􏰄 􏰯􏰲 ). One can derive that 􏰯􏰰 = ∆􏰆􏰀􏰁 and
􏰯􏰮 􏰯􏰮 􏰯􏰮 􏰯􏰮
􏰯􏰲 = ∑􏰂 􏰋􏰎∆􏰞(􏰋􏰎􏰦􏰄) . It can be seen that the expression of 􏰜􏰁 is very complicated especially 􏰯􏰮 􏰍􏰏􏰁 (􏰋􏰎∆􏰞􏰮􏰦􏰄)􏰟 􏰮
for 􏰯􏰲.Tosimplifythescenario,nowweconsiderthecasewhereN=2,whichmeansthere 􏰯􏰮
are two patent holders named 1 and 2 (duopoly) in the technology market. Firm 1 licenses its technology 1 to 􏰀􏰄 − 1 firms, and firm 2 licenses its technology 2 to 􏰀􏰚 − 1 firms. Assume
􏰆 = 1, which means all firms produce the homogenous good at the beginning. Since we consider the case where complementors have not been engaged, we let the initial value of m, 􏰇􏰫 = 0. Under this circumstance, we derive that for firm 1 the derivative of total profit 􏰜􏰄 with respect to m is
􏰜􏰄 = [1+􏰅(􏰀 −1)]􏰔􏰄 −􏰝􏰈 = −2[􏰄􏰦􏰳(􏰋􏰤􏰙􏰄)] ∙(∆􏰞􏰋􏰟􏰮􏰦􏰄)􏰟 ( ∆􏰞􏰋􏰤 − ∆􏰞􏰋􏰟 )−􏰝􏰈 􏰮 􏰄 􏰮 (􏰄􏰦􏰋􏰟)􏰟 (∆􏰞􏰋􏰤􏰮􏰦􏰄)􏰟 ∆􏰞􏰋􏰤􏰮􏰦􏰄 ∆􏰞􏰋􏰟􏰮􏰦􏰄
(14)
We now discuss the value of 􏰜􏰮􏰄 that indicates the change of firm 1’s profitability with the number of complementors m and further discuss when to engage complementors for firm 1 in the given licensing scenario. The following are the description of the scenario and two related propositions.
Scenario: In a technology market, two patent holders exist and license their own technologies to other firms. The licensing market has reached the equilibrium. The two firms are also both involved in the product market. Goods of the two varieties are homogenous at the beginning.
Proposition 2a. For one of the patent holders it can consider engaging complementors when two conditions are satisfied: the firm licenses its technology to fewer firms than the other; the transaction cost with complementors is small.
Proof. We adopt firm 1’s stance. We have solved the expression of 􏰜􏰮􏰄, seen as Expression
(14). In (14), we can see that −2 [􏰄􏰦􏰳(􏰋􏰤􏰙􏰄)] ∙ (∆􏰞􏰋􏰟􏰮􏰦􏰄)􏰟 is always negative. In addition, (􏰄􏰦􏰋􏰟)􏰟 (∆􏰞􏰋􏰤􏰮􏰦􏰄)􏰟
function 􏰴(􏰀) = ∆􏰞􏰋 increases in k monotonically. Hence, when 􏰀􏰄 is larger than 􏰀􏰚 and ∆􏰞􏰋􏰮􏰦􏰄
􏰝􏰈 is small, 􏰜􏰮􏰄 may be positive. Under the circumstances, involving complementors brings more benefit to firm 1. Especially if 􏰝􏰈 = 0, which means firm 1 has very easy access to its
13

complementors, it is always profitable to engage complementors as long as 􏰀􏰄 < 􏰀􏰚 regardless the value of 􏰅 and ∆􏰆.
It is difficult to solve 􏰜􏰮􏰄 = 0 and find the analytical solution of m at the equilibrium because it is a third degree polynomial equation. Also, one does not have to do so in the practice. Under a specific circumstance, we can solve the equilibrium m with estimations of
􏰀􏰄, 􏰀􏰚, ∆􏰆, 􏰅 using numerical analysis. Let us consider a completely imaginary but typical scenario where 􏰀􏰄 = 6, 􏰀􏰚 = 12, ∆􏰆 = 0.01, 􏰅 = 0.8. Let 􏰜􏰮􏰄 = 0, the equation can be written as
􏰫.􏰫􏰵(􏰫.􏰄􏰚􏰮􏰦􏰄) = 􏰝􏰈 (15) 􏰄􏰄(􏰫.􏰫􏰶􏰮􏰦􏰄)􏰷
It can be seen that with a small value of 􏰝􏰈, m can be positive. In addition, the left side of (15) is decreasing with m. Hence, in this specific scenario, the firm should involve complementors when the transaction cost is small, and should involve more when 􏰝􏰈 is smaller.
The result indicates that relative number of licensees of incumbents is the key to determine their ecosystem strategy in the licensing behaviour. Involving complementors can be beneficial when the firm is licensing less aggressively than its competitor in the technology market. This can also be explained in the intuitive logic. For firms 1 and 2 in a technology market with firm 2 licensing to more followers, licensees of firm 2 are causing more rent dissipation effect due to greatly increased competition in the product market. This negative effect is shared across firm 1 and 2 because good 1 and 2 are completely homogenous, while only firm 2 benefit from licensing fees of these licensees. As a result, firm 1 undertakes more rent dissipation effect because 􏰀􏰚 − 1 is larger. Now if firm 1 engages complementors and encourages them to license complementary products to its licensees, good 1 becomes differentiated from good 2 in the product market. Market for the two goods is separated into two niche markets (Arora & Fosfuri 2003), and competition becomes more close in each one. Two positive effects happen on firm 1: with less market share for good 1 at the beginning, now its market share increases as a result of product differentiation and profit for firm 1 increases; the rent dissipation effect caused by firm 2’s licensees is reduced on firm 1 because good 2 itself becomes a more close competitive market.
Still in this scenario, now we discuss for the firm that is licensing more, what should it do in terms of the ecosystem strategy.
Proposition 2b. For one of the patent holders, if it licenses its technology to more firms than the other, it is not favorable to involve complementors into the technology market.
Proof. Following the proof of proposition 2a, we can see that in Expression (14), if 􏰀􏰄 > 􏰀􏰚, then ∆􏰞􏰋􏰤 − ∆􏰞􏰋􏰟 > 0 and 􏰜􏰮􏰄 will be always negative whatever the value of m is. In
∆􏰞􏰋􏰤􏰮􏰦􏰄 ∆􏰞􏰋􏰟􏰮􏰦􏰄
this case, profit will always decrease no matter how many complementors are involved.
The result implies that involving complementors is not always beneficial. The logic is similar
to that in Proposition 2a. If firm 1 licensing more aggressively than firm 2, firm 2 undertakes more rent dissipation effect caused by firm 1’s larger number of licensees. Now if firm 1
14

engages complementors and builds its innovation ecosystem, good 1 is improved and differentiated from good 2. Although this increased degree of differentiation leads to the increasing market share of good 1 in the competition, the larger rent dissipation effect caused by 􏰀􏰄 − 1 licensees is undertaken more by firm 1 because of closer competition. Hence, overall for firm 1 the rent dissipation effect dominates the revenue effect under this circumstance.
Proposition 2a and 2b together present an interesting insight that the asymmetry in a licensing equilibrium is the key to determine firms’ ecosystem strategy. This provides practical implications for firms in the inferior position in the licensing competition. They can compete with the dominant licensor by employing ecosystem strategy as a complementary strategy. Literature has shown that licensing competition is not rare among many firms (Arora 1997). However, adoption of other supportive strategy has been ignored by firms in the competition. This result indicates additional strategic space for the ‘weaker licensor’, or in other words, shows that the asymmetric position in the licensing competition generates a strategic incentive for involving complementors.
Note that this result is based on the scenario that licensors are also involved in the product market, which may apply to many large firms. As stated in the introduction part, in addition to start-ups that do not possess the capability to manufacture, large firms also license actively. Hence these two propositions are more related to those that also participate in the product competition. For the licensor that earn profits only through licensing, this does not apply because the rent dissipation effect due to licensees’ competition does not exist.
CONCLUSION
Licensing has been a common instrument for firms to exploit or acquire technologies. In addition to this purpose, firms also license their technologies out for strategic use. Although literature has discussed the optimal licensing strategy, this does not mean firms can fully exploit the value from their technologies by licensing. They still face the erosion of the patents’ value sourcing from other challenges. One challenge is posed by the presence of innovation ecosystem, where complementors have great impact on both licensors’ and licensees’ product performance. This on the other hand offers the strategic space for licensors to exploit more rent from their technologies. Therefore, licensors need to adopt proper ecosystem strategy to support its licensing strategy and hence increase overall profits.
By extending the licensing model from the literature and adding the involvement of complementors our paper shows that the participation of complementors brings more profit to licensors. However, our analysis also shows that the profitability of licensors is a non-linear U-shaped function with the number of complementors engaged. When licensors involve too many complementors, the equilibrium of product competition will move beyond the optimal status and reduce the licensors’ overall profits. The result also applies to licensors that are not engaged in the product market.
Another important result of our analysis is that technology holders’ ecosystem strategy is greatly influenced by the asymmetry of the licensing competition. In reality, the extent of
15

licensing across firms in the technology market is usually different. We show that in a technology market where two patent holders exist and are asymmetric in licensing, if one of the firms licenses less aggressively, it should engage a certain number of complementors as a complementary strategy to improve profitability. However, if one of the firms is a dominant licensor, it should not involve complementors. In this case ecosystem strategy would conflict with the licensing strategy. We also provide tentative explanation for the result, which also contains insights on the relationship between ecosystem and licensing.
One limitation of our model is that we treat the licensing strategy as static rather than a dynamic strategy. This means numbers of licensees are fixed in our analysis. This makes sense in the short term. However in the long run, since involvement of complementors will impact the product competition, according to Arora and Fosfuri (2003), other firms will adjust their number of licensees to deal with the new situation in the product market. Hence, if our model is seen as a binary function with two variables 􏰀􏰁 and m, one can find the equilibrium for optimal both licensing strategy and ecosystem strategy. Therefore the alignment of these two strategies can be discussed, which will be an interesting topic for future research.
16

REFERENCES
Adner, R., 2016. Ecosystem as Structure: An Actionable Construct for Strategy. Journal of Management, XX(X), pp.1–20. Available at: http://jom.sagepub.com/cgi/doi/10.1177/0149206316678451.
Adner, R., 2017. Ecosystem as Structure: An Actionable Construct for Strategy. Journal of Management, 43(1), pp.39–58.
Adner, R., 2006. Match your innovation strategy to your innovation ecosystem. Harvard business review, 84(4), p.98.
Adner, R., 2012. The wide lens: A new strategy for innovation, Penguin UK. Adner, R. & Kapoor, R., 2015. Innovation ecosystems and the pace of substitution:
re-examining technology s-curves. Strategic Management Journal.
Adner, R. & Kapoor, R., 2010. Value creation in innovation ecosystems: how the structure of technological interdependence affects firm performance in new technology generations.
Strategic Management Journal, 31(2), pp.306–333.
Alexy, O., Criscuolo, P. & Salter, A., 2009. Does IP strategy have to cripple open innovation?
MIT Sloan Management Review, 51(1), pp.71–77. Available at:
http://search.proquest.com.library.capella.edu/docview/224960458?accountid=27965. Allarakhia, M. & Walsh, S., 2011. Managing knowledge assets under conditions of radical
change: The case of the pharmaceutical industry. Technovation, 31(2–3), pp.105–117.
Available at: http://dx.doi.org/10.1016/j.technovation.2010.11.001.
Arora, A., 1997. Patents, licensing, and market structure in the chemical industry. Research
Policy, 26, pp.391–403.
Arora, A. & Ceccagnoli, M., 2006. Patent Protection, Complementary Assets, and Firms’
Incentives for Technology Licensing. Management Science, 52(2), pp.293–308. Arora, A. & Fosfuri, A., 2003. Licensing the market for technology. Journal of Economic
Behavior & Organization, 52(2), pp.277–295. Available at:
http://linkinghub.elsevier.com/retrieve/pii/S0167268103000027.
Arora, A., Fosfuri, A. & Gambardella, A., 2001. Markets for Technology and their Implications
for Corporate Strategy. Industrial and Corporate Change, 10(2), pp.419–451. Available
at: http://icc.oupjournals.org/cgi/doi/10.1093/icc/10.2.419.
Autio, E. & Thomas, L.D.W., 2016. Tilting the Playing Field: Towards an Endogenous
Strategic Action Theory of Ecosystem Creation. Academy of Management Proceedings,
2016(1), p.11264.
Bonanno, G. & Vickers, J., 1988. Vertical Separation. The Journal of Industrial Economics,
36(3), pp.257–265.
Caves, R.E., Crookell, H. & Killing, J.P., 1983. The Imperfect Market for Technology Licenses.
Oxford Bulletin of Economics and Statistics, 45(3), pp.249–267.
Cohen, B., 2006. Sustainable valley entrepreneurial ecosystems. Business Strategy and the
Environment, 15(1), pp.1–14.
Davis, J.P., 2016. The Group Dynamics of Interorganizational Relationships: Collaborating
17

with Multiple Partners in Innovation Ecosystems. Administrative Science Quarterly, pp.1–
41.
Gallini, N.T., 1984. Deterrence by Market Sharing : A Strategic Incentive for Licensing. The
American Economic Review, 74(5), pp.931–941.
Gallini, N.T., 1992. Patent Policy and Costly Imitation. The RAND Journal of Economics, 23(1),
pp.52–63. Available at: http://search.ebscohost.com/login.aspx?direct=true&db=buh&AN=5189348&site=ehost- live.
Gallini, N.T. & Wright, B.D., 1990. Technology Transfer under Asymmetric Information. RAND journal of economics, 21(1), pp.147–160.
Garnsey, E., Lorenzoni, G. & Ferriani, S., 2008. Speciation through entrepreneurial spin-off: The Acorn-ARM story. Research Policy, 37(2), pp.210–224.
Gawer, A. & Cusumano, M.A., 2013. Industry Platforms and Ecosystem Innovation. Journal of Product Innovation Management, 31(3), pp.417–433.
Grindley, P.C. & Teece, D.J., 1997. Managing intellectual capital: licensing and cross-licensing in semiconductors and electronics. California Management Review, 39(2), pp.8–41. Available at: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=692195.
Hadfield, G.K., 1991. Credible Spatial Preemption through Franchising. RAND journal of economics, 22(4), pp.531–543.
Iansiti, M. & Levien, R., 2004a. Keystones and dominators: framing operating and technology strategy in a business ecosystem. Harvard Business School, Working Paper, pp.3–61. Available at: http://www.libraryservices.nl/jip/sites/default/files/Ecosystems.pdf [Accessed May 7, 2014].
Iansiti, M. & Levien, R., 2004b. Strategy as Ecology. Harvard Business Review, 82.
Iansiti, M. & Richards, G., 2006. Information Technology Ecosystem: Structure, Health, and
Performance. Antitrust Bull. Available at: http://heinonlinebackup.com/hol-cgi-bin/get_pdf.cgi?handle=hein.journals/antibull51&se ction=10 [Accessed May 5, 2014].
Kamiyama, S., Sheehan, J. & Martinez, C., 2006. Valuation and Exploitation of Intellectual Property. OECD Science, Technology and Industry Working Papers, 2006/05, p.48. Available at: http://dx.doi.org/10.1787/307034817055.
Kapoor, R. & Lee, J., 2013. Coordinating and competing in ecosystems: How organizational forms shape new technology investments. Strategic Management Journal, 296(July 2012), pp.274–296.
Katz, M.L. & Shapiro, C., 1986. Technology Adoption in the Presence of Network Externalities. Journal of political economy, 94(4), pp.822–841.
Lichtenthaler, U., 2005. External commercialization of knowledge: Review and research agenda. International Journal of Management Reviews, 7(4), pp.231–255.
Liu, G. & Rong, K., 2015. The Nature of the Co-Evolutionary Process: Complex Product Development in the Mobile Computing Industry’s Business Ecosystem. Group & Organization Management, 40(6), pp.809–842.
18

Moore, J.F., 2004. Business ecosystems and the view from the firm. Antitrust Bull., 51, pp.31– 75.
Moore, J.F., 1993. Predators and prey: a new ecology of competition. Harvard business review, 71(3), pp.75–86.
Moore, J.F., 1996. The Death of Competition: Leadership and Strategy in the Age of Business Ecosystems,
Nambisan, S. & Baron, R.A., 2013. Entrepreneurship in Innovation Ecosystems: Entrepreneurs’ Self-Regulatory Processes and Their Implications for New Venture Success. Entrepreneurship Theory and Practice, 37(5), pp.1071–1097.
Rivette, K.G. & Kline, D., 2000. Rembrandts in the attic: Unlocking the hidden value of patents, Harvard Business Press.
Rockett, K.E., 1990. Choosing the Competition and Patent Licensing. The RAND Journal of Economics, 21(1), pp.161–171.
Rong, K. et al., 2015. Nurturing business ecosystems for growth in a foreign market: Incubating, identifying and integrating stakeholders. Journal of International Management, 21(4), pp.293–308.
Rong, K. & Shi, Y., 2014. Business Ecosystems Constructs, Configurations, and the Nurturing Process, Springer.
Shepard, A., 1987. Licensing to Enhance Demand for New Technologies. The RAND Journal of Economics, 18(3), pp.360–368.
Teece, D.J., 1998. Capturing value from knowledge assets: The new economy, markets for know-how, and intangible assets. California Management Review, 40(3), pp.55–80.
Teece, D.J., 1986. Profiting from technological innovation : Implications for integration , collaboration , licensing and public policy. Research Policy, 15(February), pp.285–305.
Teece, D.J., 1977. Technology Transfer by Multinational Firms : The Resource Cost of Transferring Technological Know-How. The Economic Journal, 87(346), pp.242–261.
Thomas, L.D.W. & Autio, E., 2015. The processes of ecosystem emergence. Academy of Management Proceedings, 2015(1), pp.10453–10453.
Vickers, J., 1985. Delegation and the Theory of the Firm. The economic journal, 95(1985), pp.138–147.
19

Exploring the Future of Patent Analytics

Leonidas Aristodemou, University of Cambridge
Frank Tietze, University of Cambridge

In a connected world, where successful technological development depends increasingly on collaboration between different partners, effectively utilizing patent data analytics has huge, yet unexploited potential. Given suitable analytics solutions, this high-quality data can be used for decision making on a strategic level in all kind of organizations. The paper contributes to expanding the field of patent analytics for more effective exploitation of the worldwide largest repository of technological information. We do this by developing a domain level technology roadmap following a three-stage technology roadmapping and problem-solving approach. Firstly, from desk research and expert discussions, we identified five main problem themes in the patent analytics field (patent data, database interconnectedness, data analysis, data visualisation, and patent quality). Secondly, we verified and expanded these problem themes through an online survey with 70 respondents. Thirdly, we explored the future direction of the field through a workshop, with inputs from the preparatory stages above, with 28 leading experts. The approach served to develop a technology roadmap to facilitate collaboration and coordinated action within the patent analytics community. We identify thirteen priority technologies, such as artificial intelligence and neural networks, fifteen complementary technologies, such as block chain, and five new technologies, such as technologies for linking databases, to be adopted in the field and are important in overcoming the problems. We also identify twenty-one enablers for potential breakthrough progress of the field that cluster around four themes: technology development cycles and methodologies; legislation and standardisation for patent data quality; continuous professional development; and cooperation between industry and academia. Key next actions include the generation of use cases for different users, the standardization and harmonization of patent ontologies and the implementation of reporting standards.

Keywords: Patent analytics, Technology roadmapping, Patent data, Visualization, Data quality, Data interconnectedness

Download here

Scoring methods for evaluating and selecting early stage technology and innovation projects
Rick Mitchell, University of Cambridge
Rob Phaal, University of Cambridge
Nicky Athanassopoulou, IfM ECS

In the early stages of technology or innovation projects it is often necessary to make decisions about which projects to pursue and which to shelve when only scant information is available. This practiceoriented working paper provides guidance on how to make the best use of the information that exists by assessing projects against a number of appropriate factors and allotting scores to each. We show how to design an appropriate scoring tool for any particular case, including: the importance of treating measures of Opportunity and Feasibility separately; how to choose the factors; how to ensure that the scoring is as logical and objective as possible; how to include the inevitable uncertainty; and how to manage the process, including the treatment of portfolio-level considerations such as ‘balance’. It is important to manage the scoring process carefully to avoid cognitive biases. The results can be plotted in different ways to help the decision process.

Keywords: Scoring methods, early stage technology, innovation projects

Download here

The Impact of Additive Manufacturing Technologies on Industrial Spare Parts Strategies
Daniel Beiderbeck, University of Cambridge
Dominik Deradjat, University of Cambridge
Tim Minshall, University of Cambridge

The paper aims to investigate potential benefits and the applicability of additive manufacturing (AM) technologies for spare parts management in the automotive industry. Research results contribute to a gap in literature on strategic impact of AM technologies on the automotive after sales business. Firstly, the paper investigates the general validity of AM in the spare parts industry by utilising a working hypothesis which assumes that AM technologies will have a strategic impact on the automotive aftermarket. Secondly, interacting market partici-pants and their relation to potential applications of AM are explored. The research is exploratory in nature and employs a multi-case research approach. The analysis identified potential benefits in the automotive aftermarket to transform this business by providing individualised spare parts on demand and on location without a necessity for expensive tooling. However, the research also revealed that neither concepts are technically feasible from today’s point of view. Nevertheless, additive technologies entail advantages as outlined in this paper that will affect the automotive aftermarket in the future. The paper summarises five findings that can support research in the area.

Keywords: Additive Manufacturing, Spare Parts Management, Automotive
Download here

Topic Roadmapping and Performance Dimensions
Clare Farrukh, University of Cambridge
Nicky Athanassopoulou, University of Cambridge
Rob Phaal, University of Cambridge

Identifying problems that a technology can solve at an early stage in its development can enhance the exploitation opportunities for an organisation. Initiating an ongoing technology-commercial dialogue facilitates the process but can feel unstructured and lacking in focus. Current roadmapping processes, while supportive of the communication process, sometimes lack consideration of specific parameters needed for matching a new technology to a new market. This paper describes the development and testing of a practical approach to mapping technology opportunities, with the aim of engaging both commercial and technical stakeholders in evaluating a technology and recording tangible outputs from the discussion. Using an exploratory topic roadmapping workshop approach in conjunction with a technology performance comparison template, a practical process is provided for scientists, technologists and industrialists to drive forward targeted commercialisation. Development and use of this approach is illustrated by case studies of the process and the templates used. The templates are easy to apply and help to structure and guide discussion, promote a consensual way forward and lead to practical action plans. The organisational impact and process learning is discussed, along with implications for improving and further testing of the methods.

Keywords: Roadmapping, performance, technology, commercialisation

Download here

Technology Roadmapping for Strategy and Innovation: Charting the Route to Success
Technology-roadmappingTechnology roadmapping is a core method to help companies and other organisations gain orientation for future opportunities and changes.
This book is a key resource for technology roadmapping – it provides expert knowledge in four areas:
To frame/embed technology roadmapping
To structure the process and tasks of technology roadmapping
To implement technology roadmapping into corporate strategies
To link technology roadmapping to further instruments of strategic planning and corporate foresight
This comprehensive survey of technology roadmapping includes papers from leading European, American and Asian experts:
It provides an overview of different methods of technology roadmapping and the interactions between them
It familiarises readers with the most important sub-methods
It embeds/links technology roadmapping to the overall framework of management research and business studies
This book, the first of a series, is unique: it aims to become the leading compendium for technology roadmapping knowledge and practice.

For more information about roadmapping, please go to the roadmapping section, or contact:

Rob Phaal
E: rob.phaal@eng.cam.ac.uk

ISBN 978-3642339226
Purchase on Amazon

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

Twelve of the University’s very best teaching talents have been honoured at the annual Pilkington Prizes awards ceremony.

This year, prizes have gone to individuals who have pioneered new methods of learning, those whose work on outreach programmes has been simply outstanding, or those who have shown an incredible capacity to connect with, and inspire students to achieve.

One of the prize winners, Dr Tim Minshall, is a Senior Lecturer at the Department of Engineering. Tim’s teaching is remarkable in its quality, diversity and impact. He consistently achieves the highest number of “excellent” ratings for the Manufacturing Engineering Tripos, and won Best Fourth Year Lecturer in 2009. Noted for his talent in imaginatively conveying complex ideas, Tim keeps his courses, such as “The Engineer in Society”, up-to-the-minute in content and delivery, with engaging guest speakers and on-line learning tools; and he embraces difficult concepts – ethics in engineering, for example – in a way that motivates students to engage.

All of the prize winners are linked by their commitment to teaching of the highest possible quality. The Pilkington Teaching Prizes were established in 1994 by businessman and alumnus of Trinity College, Sir Alastair Pilkington. The aim was to ensure that excellence in teaching at the University was given proper recognition.

The prize winners received their awards from the Vice-Chancellor during a reception at Downing College.

在这里插入图片描述

Research Themes
TEG research is focused around three themes: open innovation, investment, and university-industry knowledge exchange. Examples of projects in each of these areas are given below.

Open innovation
An overview of all our open innovation research, publishing and education activities is given via CTM’s open innovation pages. Current TEG research projects in this area are investigating the role intermediary organisations in helping firms implement open innovation, the influence of location on open innovation strategies for SMEs in the UK and South Korea, strategies for collaboration in emerging sectors, and the role of communication within an open innovation ecosystem. The outputs of completed TEG research on open innovation have been converted into teaching and training materials to support firms in implementing open innovation. You can follow our open innovation discussions via twitter, read our blog, or join our LinkedIn group. We have also established the Open Innovation Research Forum (OIRF) as an international network of researchers focused on identifying, understanding and addressing the challenges of implementing open innovation.

University-industry knowledge exchange
TEG’s early work in this area focused on the role of spin-outs within university research commercialisation strategies. Current work is focused on a range of issues relating to the establishment, operation and impact of long-term partnerships between engineering firms and universities. This work has strong links to TEG projects on open innovation and location, and to the Engineering Department’s strategic theme on “Inspiring Research Through Industrial Collaborations”.

Technology business investment and incubation
TEG research on investment and incubation is currently focused on how entrepreneurs learn from prior failure when setting up new ventures, trends in business incubation, and the availability of investment for new firms in emerging industries. TEG also co-authored the ‘Funding Technology’ series of reports the US, Israel, Germany and the UK.
Quick Links
CTM Research Papers
CTM Working Papers
CTM Reports
Department of Engineering
Share This

Share

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 点我我会动 设计师:白松林 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值