# Apollo开发者社区 #
《Robbie带你入门自动驾驶》免费课程→传送门

1. 引言
Apollo自动驾驶开放平台一直致力于为自动驾驶领域的开发者提供强大的支持。在最新发布的Beta版本中,Apollo带来了许多新特性和优化,使得开发者能够更加便捷、高效地进行自动驾驶系统的研发。本文将重点介绍这些新特性和优化,帮助开发者更好地了解和使用Apollo平台。

2. 基于包管理的PnC和感知扩展开发范式
在Beta版中,Apollo对PnC(Planning and Control)和感知扩展开发范式进行了全面升级。通过基于包管理的方式,开发者可以更加灵活地进行组件扩展和插件扩展,从而实现更高效的开发流程。

2.1 统一的对外接口
Apollo Beta版将接口统一封装在external_command模块中,隔离了上层业务调用和PnC模块的接口变化。这使得开发者可以更加方便地进行自定义扩展接口和底盘命令。
2.2 全新插件扩展机制
Apollo Beta版将scenario、task和traffic rules插件化,便于用户独立开发部署自己的插件。通过配置流程来启动运行插件,使得扩展更加轻量化和易扩展。
2.3 分级参数配置机制
Beta版对全局参数和局部参数进行了划分,局部参数放在插件中独立管理。这使得开发者可以更方便地查询和修改参数。
3. 全新打造的Dreamview Plus开发者工具入口
Apollo Beta版推出了全新的开发者工具入口Dreamview Plus,为开发者提供了更便捷的多场景使用、更灵活的可视化布局和更丰富的数据资源。

3.1 基于模式的多场景使用
Dreamview Plus以感知、PnC等具体开发场景作为模式分类,精简了各类模式下的操作步骤,优化了使用流程,提升了开发效率。Beta版率先推出了默认模式、感知模式和PnC模式,后续还会推出实车模式等服务各类开发者场景的模式。
3.2 基于面板的布局可视化
Dreamview Plus支持自由配置可视化面板的布局、各面板内容以及大小,适配不同开发者的调试习惯,使得布局更加灵活。
3.3 引入资源中心数据更丰富
Dreamview Plus进一步加强了与Studio云端资源的互动,可一键下载各类资源用于算法测试,包括地图、场景、车辆配置、数据包等。
4. 感知模型全面升级,支持增量训练
Apollo Beta版在激光雷达、相机、雷达感知模型上进行了全面升级,引入了前沿的网络模型,并通过百万量级数据进行模型训练,极大地提高了模型的泛化能力,优化了模型检测效果。

4.1 全新模型效果更优
在激光雷达检测方向,采用CenterPoint替换了CNNSeg模型;相机检测方向,采用YOLOX\*YOLO3D替换了原YOLO模型。这些新模型在检测效果上都有显著提升。
4.2 提供增量训练易扩展
Apollo Beta版提供了全面且详细的增量训练教程,通过使用少量标注数据与Apollo预训练模型,开发者可以用较低成本显著提升特定目标和特定场景下的检测能力。训练代码完全开源,开发者可独立自主完成模型训练。
5. 支持4D毫米波雷达
Apollo Beta版从硬件驱动到感知模型层,增加了对4D毫米波雷达的支持。这使得自动驾驶车辆可以测量目标高度信息,同时实现更高的角度分辨率、输出更密集的点云,有利于使用深度学习的3D目标检测方法进行更精确的障碍物检测,提高自动驾驶车辆在雨雪雾等天气下的安全性。
本文介绍了Apollo自动驾驶开放平台的最新Beta版本,包括基于包管理的PnC和感知扩展、统一接口、插件化设计、DreamviewPlus工具升级、感知模型增强以及对4D毫米波雷达的支持,旨在提升开发者研发效率和系统性能。
1958

被折叠的 条评论
为什么被折叠?



