GDUT_寒假训练题解报告_专题II_个人题解报告——题目:C -六度分离

GDUT_寒假训练题解报告_专题II_个人题解报告——题目:C -六度分离

题干:

1967年,美国著名的社会学家斯坦利·米尔格兰姆提出了一个名为“小世界现象(small world phenomenon)”的著名假说,大意是说,任何2个素不相识的人中间最多只隔着6个人,即只用6个人就可以将他们联系在一起,因此他的理论也被称为“六度分离”理论(six degrees of separation)。虽然米尔格兰姆的理论屡屡应验,一直也有很多社会学家对其兴趣浓厚,但是在30多年的时间里,它从来就没有得到过严谨的证明,只是一种带有传奇色彩的假说而已。

Lele对这个理论相当有兴趣,于是,他在HDU里对N个人展开了调查。他已经得到了他们之间的相识关系,现在就请你帮他验证一下“六度分离”是否成立吧。

Input

本题目包含多组测试,请处理到文件结束。
对于每组测试,第一行包含两个整数N,M(0<N<100,0<M<200),分别代表HDU里的人数(这些人分别编成0~N-1号),以及他们之间的关系。
接下来有M行,每行两个整数A,B(0<=A,B<N)表示HDU里编号为A和编号B的人互相认识。
除了这M组关系,其他任意两人之间均不相识。

Output

对于每组测试,如果数据符合“六度分离”理论就在一行里输出"Yes",否则输出"No"。

Sample Input

8 7
0 1
1 2
2 3
3 4
4 5
5 6
6 7
8 8
0 1
1 2
2 3
3 4
4 5
5 6
6 7
7 0

Sample Output

Yes
Yes

有这个题目我们可以知道,这是一个无向图,边权都为1,两点最短路径小于等于7就是满足条件的,所有点满足条件,那么就是验证了六度分离理论。
数据范围n小于100;所以是一个Floyd-Warshall板子题目:

for(int time=0;time<m;time++)
		{
			int from,to;
			scanf("%d %d",&from,&to);
			d[from][to]=1;
			d[to][from]=1;
		}
		for(int time=0;time<n;time++)
		{
			for(int time1=0;time1<n;time1++)
			{
				for(int time2=0;time2<n;time2++)
				{
					d[time1][time2]=min(d[time1][time2],d[time1][time]+d[time][time2]);
					d[time2][time1]=d[time1][time2];
				}
			}
		}

要处理好这个无向图的方向问题,我选择了笨办法让d[time2][time1]=d[time1][time2];
完整代码:

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <string>
#include <climits>

#define INF 0x3f3f3f3f
#define ULL unsigned long long
#define LL long long
using namespace std;
int d[105][105];
int n,m;
int main()
{
	while(~scanf("%d %d",&n,&m))
	{
		memset(d,INF,sizeof(d));
		for(int time=0;time<n;time++)
		{
			d[time][time]=0;
		}
		for(int time=0;time<m;time++)
		{
			int from,to;
			scanf("%d %d",&from,&to);
			d[from][to]=1;
			d[to][from]=1;
		}
		for(int time=0;time<n;time++)
		{
			for(int time1=0;time1<n;time1++)
			{
				for(int time2=0;time2<n;time2++)
				{
					d[time1][time2]=min(d[time1][time2],d[time1][time]+d[time][time2]);
					d[time2][time1]=d[time1][time2];
				}
			}
		}
		int num=0;
		for(int time=0;time<n;time++)
		{
			int flag=1;
			for(int time1=time+1;time1<n;time1++)
			{
				if(!(d[time][time1]<=7||d[time1][time]<=7)){flag=0;break;}
			}
			if(flag)num++;
		}
		if(num==n)printf("Yes\n");
		else printf("No\n");
	}
	return 0;
}


发布了21 篇原创文章 · 获赞 2 · 访问量 966
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 书香水墨 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览