QuickSort与QuickSelect 的原理与java实现

QuickSort与QuickSelect 的原理与java实现

Quicksort

QuickSort 可以说是在面试当中最容易遇到的排序算法了,在最好的情况下时间复杂度为 O ( n l o g n ) O(nlogn) O(nlogn) 最坏的情况下是 O ( n 2 ) O(n^2) O(n2)

快排的思想,选取一个基准值pivot,并通过遍历数组的方式将数组分为两个部分,小于基准值的与大于基准值的。

再对两个数组进行递归运算,直到最后两个数组内都只有一个元素时停止。
java实现:

class QuickSort{
	public static void quickSort(int[] nums){
		if(nums == null || nums.length == 0){
			return;
		}
		///检测数组是否符合条件
		helper(nums,0,nums.length-1);
		
	}
	private static void helper(int[] nums, int start,int end){
	///递归函数
		if(start < end){
			int index = partition(int[] nums, start,end);
			helper(nums,start,index-1);
			helper(nums,index+1,end);
		}
	}
	private static int partition(int[] nums,int start, int end){
		/// 对当前数字进行一次排序,根据当前选定的基准值pivot将数组分成两个部分
		int base = nums[start];
		while(start < end){
			while(nums[end] > base && start < end){
				end--;
			}
			if(start < end){
			nums[start++] = nums[end];
			}
			while(nums[start]< base && start< end){
				start++;
			}
			if(start < end){
				nums[end--] = nums[start];
			}
		}
		nums[start] = base;
		return start;
	}
}

QuickSelect

QuickSelect 是一个可以快速在当前数组中选取到按照顺序第K大或者是第K小的元素的算法。通常来说,实现这一目标我们需要对数组进行排序,然后直接进行选择,那这样我们所需要的时间复杂度最小是 O ( n l o g n ) O(nlogn) O(nlogn) ,然而我们使用QuickSelect 算法则可以在平均 O ( n ) O(n) O(n)的时间内完成,最坏的情况时间复杂度则是 O ( n 2 ) O(n^2) O(n2).
为什么要将QuickSelect和QuickSort 放在同一篇文章里面讲呢,因为其实这两者的实现是非常相似的。
当我们根据一个基准值将数组分为两个部分的时候,如果当前基准值的Index小于我们需要寻找的kth数值,我们则可以直接去后半的数组中寻找,而反之我们则前往前半部分。

class QuickSelect{
	public static int getkth(int[] nums,int k){
		//此处K 为第k个数,如果需要选择第K大的元素,则需要在此处将参数改为nums.length-k
		return helper(nums,k-1,0,nums.length-1);
	}
	private static int helper(int[] nums, int k, int start, int end){
		if(start == end){
		//当前唯一的数字就是需要选择的数字
			return nums[start];
		}
        int i = start;
        int j = end;
        int base = nums[i];
        while(i < j){
            while(nums[j] > base && i < j){
                j--;
            }
            if(i < j){
                nums[i++] = nums[j];
            }
            while(nums[i] < base && i < j){
                i++;
            }
            if(i < j){
                nums[j--] = nums[i];
            }
        }
        nums[i] = base;
        if(start < i && k < i){
            return helper(nums,k,start,i-1);
        }
        if(end > j &&  k > j){
            return helper(nums,k,j+1,end);
        }
        return nums[i];
	}
}

从代码中我们能看出,quickSort和quickSelect 算法的实现除了传参和对于K值的判断之外几乎是一模一样的,这样我们就可以同时掌握和理解quickSort和quickSelect 两种算法了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值