KNN(K Nearest Neighbors,K近邻 )算法是机器学习一个基础算法。针对d维空间的两个点集Q和R,对于Q集合中每一个点q,查找R集合中到q距离最近的K个点。这里的距离度量常用的是Euclidean距离和Manhattan距离。
如图所示的例子,二维空间中所有蓝色点构成集合R,红点是集合Q(只有一个元素),R中点到Q的欧式距离最近的三个点都包含在红点为圆心的圆中。
KNN算法的Brute-Force实现非常简单:
选取Q集合中一点 qi
- 计算 qi 到
《Fast k Nearest Neighbor Search using GPU》
最新推荐文章于 2024-06-30 03:38:05 发布
本文介绍了使用GPU来加速KNN(K最近邻)算法的实现。传统BF算法在CPU上的计算量大,但GPU的并行计算能力使其在处理大量数据时展现出优势。通过在CUDA上实现BF算法,作者展示了GPU在高维度和大数据量下的性能提升,相比BF-Matlab、BF-C和ANN C++库,BF-CUDA方法在耗时和处理能力上有显著优势。

最低0.47元/天 解锁文章
768

被折叠的 条评论
为什么被折叠?



