弓如霹雳弦惊
码龄8年
关注
提问 私信
  • 博客:33,407
    33,407
    总访问量
  • 9
    原创
  • 536,825
    排名
  • 12
    粉丝
  • 0
    铁粉

个人简介:计算机视觉、深度学习、机器学习高质量paper分享……

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:浙江省
  • 加入CSDN时间: 2017-01-09
博客简介:

Dilusense的博客

查看详细资料
个人成就
  • 获得9次点赞
  • 内容获得9次评论
  • 获得31次收藏
创作历程
  • 10篇
    2017年
成就勋章
TA的专栏
  • CUDA
  • 深度学习
    7篇
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Cross Modal Distillation for Supervision Transfer

Abstract本文关注点是对图片的不同模态,做监督迁移学习。两种不同的模态,一种有大量的标注样本,一种没有。将从标注过样本的模态中学习得到的特征作为监督信号,用于无标注样本模态的特征学习。此方案能够对无标注信息的模态学习到很好的特征,也可以用于只含有少量标注样本的新模态的预训练。文章做了RGB图片(labeled)到depth(unlabeled)和optical flow(unlabeled)图
原创
发布博客 2017.02.18 ·
3066 阅读 ·
3 点赞 ·
0 评论 ·
4 收藏

生成式对抗网络(Generative Adversarial Nets)

一、简介2016年12月5日,在西班牙巴塞罗那举办的NIPS会议上,本文的作者也就是Ian Goodfellow,依旧以他的代表作-生成式对抗网络-为主题进行了演讲。该网络自2014年问世以来,一直受到机器学习领域的高度关注,说这是近几年最棒的想法也不为过。论文提出了一种对抗式的估计模型生成方法,该方法不同于其他方法的地方在于训练生成模型G的同时,并训练一个判别模型D。D用来判别数据是来自真实采样还
原创
发布博客 2017.02.16 ·
3352 阅读 ·
0 点赞 ·
0 评论 ·
8 收藏

Understanding and Improving Convolutional Neural Networks via CReLU

论文作者在 AlexNet 的模型上做了一个有趣的实验,发现:较低的卷积层中的一些滤波器核存在着负相关程度很高的滤波器核,而层次越高的卷积层,这一现象越不明显。作者把这一现象称为 pairing phenomenon。基于这一现象作者认为低层的卷积层具有冗余性,于是提出了CReLU。
原创
发布博客 2017.02.14 ·
3653 阅读 ·
1 点赞 ·
2 评论 ·
1 收藏

跨年龄人脸识别 Cross-Age Reference Coding

论文:《Cross-Age Reference Coding for Age-Invariant Face Recognition and Retrieval》主要内容:提出了同时使用同一人不同年龄阶段的图片进行特征编码的方法CARC以应对跨年龄人脸图片识别的任务从网络采集了多个名人不同时间的图片组成了跨年龄数据库CARD
原创
发布博客 2017.02.12 ·
9883 阅读 ·
2 点赞 ·
4 评论 ·
16 收藏

Efficient Variants of the ICP Algorithm

ICP算法(Iterative Closet Point)是三维网格注册的经典算法,常用于对物体不同角度拍摄的三维扫描像的对齐。ICP算法起始条件包括两个待注册的网格和两个网格相对关系(旋转、平移)的初始估计,算法迭代的选取两个网格的关联点对,计算点对的距离,通过最小化所有点对的距离和解优化问题求得两个网格的旋转、平移关系。由于ICP方法的广泛使用,研究人员对ICP方法也提出了多种改进。改进集中在
翻译
发布博客 2017.02.12 ·
2215 阅读 ·
1 点赞 ·
0 评论 ·
11 收藏

Multi-view Convolutional Neural Networks for 3D Shape Recognition

Multi-view Convolutional Neural Networks for 3D Shape Recognition文章出自2015年ICCV, code & data戳这里:http://vis-www.cs.umass.edu/mvcnn/ 本文立意之处:represent 3D shape 的descriptor种类繁多,最直观的descriptor生成自native 3D f
原创
发布博客 2017.01.20 ·
3590 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

《Large-Margin Softmax Loss for Convolutional Neural Networks》

机器学习中的一个任务是学习具有判别性的特征,使得类内距离较小,类间距离较大,或者说使得学习到的特征具有类内的紧致性和类间的分离性。传统的做法是利用contrastive loss,triplet loss,还有最近提出来的center loss+softmax。参考论文提出了large-margin softmax (L-Softmax) loss也是以此为目的,它扩展了传统的Softmax,取得了更好的效果。
原创
发布博客 2017.01.20 ·
1922 阅读 ·
0 点赞 ·
1 评论 ·
3 收藏

《DeepFace: Face Generation using Deep Learning》

VGG-Net框架下的人脸生成笔者主要从以下几个方面对这篇文章进行叙述:概述作者的思路主要工作思考概述文章主要的工作是在VGG-Net框架基础上实现了人脸属性分类,并使用定制高斯混合模型(cGMM)由输入人脸图像生成包含特定属性的人脸。作者的思路在正式讨论文章的实现之前,有必要先对作者的思路进行阐述。 (1)VGG框架 作者对为何采用VGG框架在文章中作了解释,首先
原创
发布博客 2017.01.19 ·
1361 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

《Fast k Nearest Neighbor Search using GPU》

KNN(K Nearest Neighbors,K近邻 )算法是机器学习一个基础算法。针对d维空间的两个点集Q和R,对于Q集合中每一个点q,查找R集合中到q距离最近的K个点。这里的距离度量常用的是Euclidean距离和Manhattan距离。 如图所示的例子,二维空间中所有蓝色点构成集合R,红点是集合Q(只有一个元素),R中点到Q的欧式距离最近的三个点都包含在红点为圆心的圆中。 K
原创
发布博客 2017.01.15 ·
1902 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

《Deep Convolutional Denoising of Low-Light Images》

《Deep Convolutional Denoising of Low-Light Images》泊松噪声泊松分布通常用于描述单位时间内随机事件发生的次数。在图像建模中,基于光照的图像噪声经常使用泊松噪声来描述,这主要是从传感器角度出发的。 由于光子数量是离散的,同时传感器在每个像素位置对光子的探测具有独立性。通常过程是传感器对一个时间区间内到达的光子数进行计数,这个过程符合泊松噪声的特征,其强
原创
发布博客 2017.01.15 ·
2461 阅读 ·
1 点赞 ·
2 评论 ·
4 收藏