深度学习基础

改善深层神经网络:

1、训练、验证、测试集

对于一个需要解决的问题的样本数据,在建立模型的过程中,将问题的data划分为:

(1)训练集(train set):用训练集对算法模型进行训练过程。

(2)验证集(development set):利用验证集或者又称为简单交叉验证集进行交叉验证,选择出最好的模型。

(3)测试集(test set):最后利用测试集对模型进行测试,获取模型运行的无偏估计

 

小数据时代:

100、1000、10000的数据量大小,可以将data划分为:

  1. 无验证集的情况:70% / 30%;

2、有验证集的情况:60% / 20% / 20%;

 

大数据时代:

  1. 100万数据量:98% / 1% / 1%;

2、超百万数据量:99.5% / 0.25% / 0.25%(或者99.5% / 0.4% / 0.1%);

 

注意:

(1)建议验证集要和训练集来自于同一个分布,可以使得机器学习算法变得更快。

(2)如果不需要无偏估计来评估模型的性能,则可以不需要测试集

 

2、机器学习的基本方法:

(1)是否存在High bias 

1>增加网络结构,如增加隐藏层数目;

2>训练更长时间;

3>寻找合适的网络架构,使用更大的NN结构;

(2)是否存在High variance? 

1>获取更多数据

2>正则化

3>寻找合适的网络结构

 

3、正则化:

       利用正则化来解决High variance的问题,正则化是在Cost function中加入一项正则化项,降低惩罚模型的复杂度。

(1)Logistic regression:

       加入正则化项的代价函数

             

 

(2)Neural network:

       加入正则化项的代价函数

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值