YOLOv8 Windows c++推理 添加一个**yolov8\_。onx **和/或**yolov5\_。Onnx **模型(s)到ultralytics文件夹。#编辑**main.cpp**来改变**projectBasePath**来匹配你的用户。#请注意,默认情况下,CMake文件将尝试导入CUDA库以与opencv dnn (cuDNN) GPU推理一起使用。#如果你的OpenCV构建不使用CUDA/cuDNN,你可以删除该导入调用并在CPU上运行示例。
whisper报错:hp, ht, pid, tid = _winapi.CreateProcess [WinError 2] 系统找不到指定的文件。 FileNotFoundError: [WinError 2] 系统找不到指定的文件。配置完成后运行cmd,输入ffmpeg,若显示如下界面,则说明配置成功。右击此电脑——>属性——>高级系统设置——>环境变量。下载下图压缩包,并解压。
RuntimeError: PytorchStreamReader failed reading zip archive: failed finding central directory 用SFPT同步训练好的权重发生报错RuntimeError: PytorchStreamReader failed reading zip archive: failed finding central directory,网上一查说是权重损坏了。gg,只能重新训练。sftp.json添加参数 "ignore": ["runs"]不让runs同步,手动传输文件。
YOLOv8找不到runs文件夹 是因为配置文件里写的是相对路径,他在你当前根目录生成了runs解决办法:1. WindowsC:\Users\xxx\AppData\Roaming\settings.yaml2. Linux/home/xxx/.config/settings.yaml将 runs_dir: runs 改为绝对路径runs_dir: D:\yolov8\runs
Windows→Linux,本地同步到服务器 这里与Remote-SSH相反,SFTP不能直接修改远程文件,它的运作方式是本地修改自动同步到远程,远程修改手动下载到本地,可以单文件同步,也可以整个文件夹同步,非常灵活,免去文件传输。tip1:本地同步文件夹到远程也是在远程目录右击,而不是本地文件夹右击。password:服务器密码,不写这个参数则每次都需要输入密码。remotePath:项目自动同步到该路径。就不需要手动上传到远程了,只有第一次需要。uploadOnSave:自动同步。ignore:忽略的文件夹,不同步。tip2:配置文件里面参数。
VS code配置免密连接Linux服务器 这里我一开始搞错了,我以为是直接打开自己电脑的文件,运行使用服务器的环境和硬件,然而并不是这样的,所以我感觉向日葵或者todesk这些远程软件也行啊,只是略卡。接下来就可以打开服务器的文件了,注意是你打开服务器的文件或代码运行,连接,然后输入密码就可以了,左下角如图表示连接成功。不是你打开自己电脑的代码能直接用服务器运行,inet和brd夹着的那串。
Ubuntu20.04安装+conda配环境全记录 点“选择”,选你刚才下载好的iso系统文件就可以,其他的选项注意跟我一样就可以,然后点“开始”,绿条走完就可以关闭拔出U盘了,现在U盘启动盘就制作好了。下载自己想要的Ubuntu版本,建议不要装最新的,bug多,推荐18.04或者20.04,我装22.04在显卡驱动上卡了一晚上。这里是重点,因为我是跑深度学习的,要用CUDA,所以必须得装官方的驱动,Ubuntu的附件驱动可能不太行。安装后,初始化新安装的 Miniconda。进去之后就会弹出来login让你登录,你就先输入用户名回车,然后输入密码回车,
pytorch保存、加载模型的方法 改模型结构加载预训练权重训练:用yaml构建模型, 加载pt权重 -----训练-----> 得到pt。2、yolov8s.pt,这是权重文件,是训练得到的,里面保存了每一层训练出来的参数,比如卷积核。从零训练:用yaml构建模型 -----训练-----> 得到pt。用预训练权重训练:加载pt -----训练-----> 得到pt。加载pt文件训练就是使用预训练权重了,要从0训练的话是加载yaml构建模型进行训练。
万能特征图可视化实现,仅一个py文件,不依赖任何算法 所有pytorch模型(包含YOLOv8/v5)均可通过加载打印查看模型结构pt模型加载方法:model = torch.load('model.pt')