- 博客(55)
- 资源 (6)
- 收藏
- 关注
原创 excel双条件筛选
问题描述说明:表格Sheet1为基础登记的数据,表格Sheet2为年度综合数据显示。要求:需要在表格Sheet2中采集表格Sheet1中的数据,表格Sheet2中的第一个表格采集每家客户同个月内发生投诉的总数,比如1月份A客户被投诉3次,B客户2月份被投诉1次,需要使用函数自动抓取这部分数据,每个月自动显示。表格Sheet2中第二个表格,需要统计Sheet1中全年数据,当年度生产部一共被投诉了多少次,市场部被投诉了多少次,需要使用函数自动抓取这部分数据,每个月自动显示。解决办法
2022-03-02 15:27:00 2078
原创 批量更改nii文件的层数
问题描述:有一批fMRI文件,需要批量更改时间点个数。思路:时间点即4D nii文件的时间维度,读取nii文件后更改第4个维度即可。步骤:import osimport numpy as npimport nibabel as nib"""作用:读取子文件夹中的nii文件,改变时间点个数,输出nii文件到各个被试子文件夹,覆盖原文件。说明:总文件夹和子文件夹中不可包含其他文件,如.mat文件等操作会覆盖原文件,注意备份。文件夹结构为:path - sub001 - 1.nii
2021-09-27 16:44:33 807 2
转载 nii文件转jpg,保存在同一文件夹下
问题描述:有一批nii文件,需要转换成jpg格式。思路:通过nib.load读取nii文件转化为数组形式,再通过imageio.imwrite导出jpg文件。步骤:import nibabel as nibimport numpy as npimport imageioimport os#读取nii文件def read_niifile(niifile): # 读取niifile文件 img = nib.load(niifile) # 下载niifile文件(其实是提取文件)
2021-09-27 16:26:49 3550 4
原创 linux批量复制并新建文件夹
问题描述:已知一批包含文件的文件夹,想要重新新建一批同名的空文件夹,且不包含原来的文件。思路:将这批文件夹的名称批量复制下来,再利用makedir命令批量生成文件夹。步骤:1.在shell终端中cd到源文件夹路径。2.利用ls命令显示全部文件夹名称,复制文件夹名称。3.返回桌面,右键新建一个文件(类似于txt文档,存放文件夹名称用,由于文件夹名称中存在换行符,需要改为空格)将复制的文件夹名称,粘贴到新建的文件中。删除换行,换为空格。4.cd到目标文件夹路径利用makedir命令批
2021-09-14 22:45:32 3287
原创 torch.cuda.is_available()返回False的解决办法
在安装好Anaconda3后,利用其自带的spyder运行程序,出现报错:RuntimeError: Attempting to deserialize object on a CUDA device buttorch.cuda.is_available() is False. If you are running on a CPU-onlymachine, please use torch.load with map_location=‘cpu’ to map yourstorages to t
2021-05-19 22:54:56 13874
原创 mricron中,dcm转nii图像数量缺失的解决办法
问题描述:使用mricron中的dcm2nii功能转换图像时,转换后的图像数目出现减少的情况。原因:使用dcm2nii功能时,文件夹路径的长度不可超过256.解决办法:更改路径长度,重命名文件夹or文件名称,使命名方式符合规范。然后就可实现正常转换。附:mricron安装包...
2021-03-24 00:50:37 872
原创 epub格式电子书编辑器
问题描述:想要制作电子书,txt格式的电子书只有纯文本,无法加入图片,epub格式电子书可包含图片。尝试利用epub编辑器制作电子书。解决办法:PC版:工具: Sigil这是一款用于编辑epub电子书的编辑器,操作简便,界面一目了然。文本编辑:有两种编辑方式:1.直接对文本进行编辑2.在编辑界面按下F2即可进入网页编辑模式,在这里可以对电子书的段落、布局等进行调整。此模式下再按下F2回到预览模式。这里的编辑类似于网页编辑,利用了标记语言,可以类比于论坛上的BBCode,通过对文
2021-02-19 16:23:18 4384
原创 利用EndNote导入并查阅文献
问题描述:想要对一批文献做分析,筛选出对自己有帮助的文献。作用:EndNote可以方便地进行文献检索,提高文献阅读效率,省去了逐篇下载阅读文献的步骤。使用方法:打开EndNote,新建库,库的作用是集中所需查阅的整类文献,比如“治疗”主题的、“恢复”主题的等。新建好库之后本地会生成一个.enl文件和一个.Data文件,只要把这两个文件做好备份,以后重装EndNote时就可以一键还原文献。新建分组,分组的作用是把库中的文献按照自己的分类方式进行整理,比如“阅读过”组,“未阅读”组.
2020-12-06 11:41:31 4070
原创 利用DPARSF预处理医学影像
DPARSF是国内的严超赣团队开发的一个基于matlab的用于处理神经科学医学影像的工具包,因为是基于matlab和spm运行的,所以需要实现安装matlab,再下载spm并载入matlab的设置路径。载入路径的时候最好选择“添加并包含子文件夹”,这样不容易出错。1.确认数据格式如果使用的是.dcm格式的文件,此项打勾,意思是把dcm格式的文件转换为nii格式。如果数据本身是nii数据(NIFTI),此项勾选先取消。2.选择文件路径这里的路径要选择不包含“FuncImg"的,即FuncImg文
2020-07-09 11:21:17 4526 3
原创 利用wget命令在linux中下载百度云盘文件
问题描述:有一个存储在百度云盘中的文件,需要上传到linux服务器上,先从云盘下载到本地再上传至linux服务器过程较为麻烦,想要利用linux的下载命令直接把文件从网盘下载至linux端。方法步骤:1.打开百度云盘,右键单击所要分享的文件,获取分享链接,把这个链接复制下来。顺手把文件名也复制一下,等下也会用到。2.在浏览器中打开刚刚分享的链接,点击下载,然后在浏览器的下载管理中把下载链接复制下来(快捷键Ctrl+J可快速打开下载管理),Edge、Chrome浏览器都可以复制下载链接。3.打开
2020-07-03 18:13:45 32273 8
原创 在README.md文件中添加图片
问题描述:在github的README.md文件中想要添加结果图片。方法步骤:1.上传图片到github仓库上传文件的方法见简单版的上传文件方法2.上传完成后点击上传后的文件名进入如下所示的页面,在图片上鼠标右击选择复制图片地址3.点击进入README.md文件,点击右边的铅笔形状按钮进行编辑4.写上![图片](https://github.com/DDDRN/cluster/blob/master/%E7%BB%93%E6%9E%9C.png?raw=true)![图片]后面的网址填
2020-07-02 21:01:37 1470
原创 怎样将本地代码上传到github
问题描述:想要把自己的本地代码备份/分享到github上方法步骤:1.本地安装git工具到电脑,下载地址:Git工具下载完成后,设置安装位置,一路点击继续即可。2.回到电脑桌面(快捷键win+D),单击鼠标右键,会出现两个Git相关的菜单,选择"Git Bash here"。3.接着会弹出一个命令窗口利用cd 命令进入本地代码所在的位置例如:cd F:\Git ,后面是我本地代码保存的地方ps:在文件管理器上找到代码位置,在地址栏处鼠标右键单击即可一键复制路径4.进入你的Githu
2020-07-02 16:17:49 6134 3
转载 利用深度学习进行时间序列分类
问题描述:有一批tsv格式(或csv格式)的时间序列数据和标签,需要搭建神经网络对其进行分类。语言:python数据:数据为tsv格式,可以用excel打开,第0列为类别,第1列往后为时间序列数据程序代码:...
2020-06-30 19:43:31 3268 2
原创 python将标签转化为one-hot(独热编码)
问题描述:在利用categorical_crossentropy作为损失函数时,需要将标签设定为one-hot格式,即每个标签的长度应转换为一个长度为类别数的向量,该向量除了所属的类别位置为1之外,其他位置值为0.from keras.utils.np_utils import to_categoricalcategorical_labels = to_categorical(int_labe...
2020-01-07 23:45:46 9460
原创 model.predict显存不够解决办法
问题:利用model.predict(data)预测结果时内存不够(报错OOM)解决办法:加上batchsize=1,每次只训练1个数据,即model.predict(data,batch_size = 1)
2019-12-22 11:31:48 2040
转载 利用python爬虫爬取百度百科词条
摘自 莫烦爬虫教程选择一个词条,输入url,随机选择这个词条下的一个子词条,重复这一步直到选择的词条下没有子词条代码选定一个初始词条并输入url## Practice: scrape Baidu Baikefrom bs4 import BeautifulSoup#request 爬取网页工具包from urllib.request import urlopen#re 正则化工具包...
2019-12-21 14:41:27 2707
原创 Python判断一个数是否为质数
思想:输入一个数n,判断能否被2到n-1之间的数整除,若可以,则这个数不是质数.(质数定义:在大于1的自然数中,除了1和它本身以外不再有其他因数的自然数。 )1.利用for循环num= int(input('输入一个任意的大于1的整数'))for i in range(3,n): a = n%i if (a ==0): print('n不是质数') ...
2019-11-24 17:24:17 13916 1
原创 利用ITK-SNAP进行抠图操作并保存mask
问题描述:想要去掉图像背景,只保留中心部分目标:1.利用ITK-SNAP制作二值化标签(即mask)2.利用软件ITK-SNAP把一幅图像中自己想要的部分抠出来步骤:打开ITK-SNAP ,这是一款可以方便进行勾画操作,制作标签的软件1.点击勾画按钮2.在图像中选点进行勾画3.勾画完成后点击accept,可以看到所勾画的区域被标签颜色所覆盖4.滚动鼠标滚轮到下一层(对于3...
2019-11-02 15:55:50 9469 8
转载 深度学习中的TTA(Test Time Augmentation)--测试时数据增强技术
定义:TTA(Test Time Augmentation):测试时数据增强方法:测试时将原始数据做不同形式的增强,然后取结果的平均值作为最终结果作用:可以进一步提升最终结果的精度原因:如果只对图像做一种增强时,采用的变换可能会使图像关键信息(即特征)丢失,比如在对图像做剪切变换时,可能会把关键特征丢掉.例如在这个狗狗识别的场景中,我们选出预测错误的样本进行查看:进一步找出原因可以发...
2019-10-15 16:03:49 14984 2
原创 利用mxnet模块进行图像增强
图像增强定义:对图像做旋转,翻转,剪切等变换以增加样本量优点:扩充样本数量,增加数据多样性mxnet:亚马逊选择的深度学习库性质:一种框架(与tensorflow,Theano类似,为框架的一种)特点:支持各种语言,python,R…1.安装mxnet库进入终端(terminal)pip install mxnet2.载入模块%matplotlib inlineimpo...
2019-10-11 11:16:15 677
原创 用于图像分割结果评估的性能指标
性能指标分为IoU,Dice 系数等在介绍性能指标之前,首先要了解混淆矩阵的概念:在混淆矩阵中,prediction代表预测值,相当于测试集的结果(不一定是正确的)Actual代表真实标签(相当于金标准ground truth)有两个指标分别为Precision(精确率,查准率)和 Recall(召回率,查全率)其中:Precision代表预测结果的准确性Recall代表预测...
2019-09-24 23:47:21 3531 1
原创 图像分割预处理,利用keras同时对图像和标签进行数据增强
问题描述:进行分割操作时,为了扩充数据量,要对图像进行数据增强,而相应的标签(mask)也要做与图像对应的数据增强以保持一致的变换.文件夹设定:data文件夹下有images,masks和aug三个文件夹,分别代表图像,标签以及增强后的图像&标签.程序载入模块#将image和mask同时做图像增强import kerasfrom keras.preprocessing.im...
2019-09-20 10:15:56 5379 9
原创 Jupyter Notebook显示历史输入和输出
问题描述:有时程序运行结果被清除或覆盖,想要显示历史输入或输出解决方法:通过_命令访问上一次和上上一次的输出_ #访问上一次输出__ #访问上上一次输出_X #访问历史 X 行输出_iX #访问历史 X 行输入其中i为小写字母,代表‘in’...
2019-08-28 17:19:52 5851
原创 Jupyter Notebook中运行.py文件
问题描述:文件夹下有xx.py格式的python文件,想要在Jupyter Notebook中运行该文件。解决办法:方法1.利用%run xx.py 直接运行得出结果。方法2:利用%load xx.py 载入代码再点击Run运行,这种方法的好处是可以方便修改代码。说明:Jupyter Notebook中以%开头的代码为魔法函数其中:%run 调用外部python脚本%l...
2019-08-28 17:08:15 76838 7
转载 keras将两个独立的模型融合起来(无传入参数版本)
在keras将两个独立的模型融合起来(多输入单输出)的基础上稍做改动将两个独立的模型融合成一个整体这里的模型在定义时没有使用传入参数,而是在模型融合的时候一起定义传入参数import kerasfrom keras.models import Modelfrom keras.layers import Input,Dense,PReLU,Dropout #PRelU为带参数的ReLU...
2019-07-25 00:33:12 5397 1
转载 keras将两个独立的模型融合起来(多输入单输出)
将两个独立的模型融合成一个参考:keras实现多个模型融合**优点:**可以给两个模型单独赋予权重**想法:**用在迁移学习中时,可以先预训练好其中一个模型,保存权重,再载入到总的模型中import kerasfrom keras.models import Modelfrom keras.layers import Input,Dense,PReLU,Dropout #PRelU为带...
2019-07-24 21:56:51 21674 15
原创 jupyter notebook加载文件夹时出现多余文件夹ipynb_checkpoints
问题描述:进行猫狗大战分类时,数据增强后显示类别为3类,与预期的两类情况不符.尝试解决: 进入终端cd到数据文件夹下使用 ls -a显示全部文件发现有隐藏文件夹 ipynb_checkpoints解决办法: 在终端使用 rm -rf ipynb_checkpoints 删除命令删除该隐藏文件夹即可结果查看:删除该隐藏文件夹后问题解决....
2019-07-08 16:51:42 11011 7
原创 利用matplotlib的plt.imshow显示cv2图像,以及图像叠加显示数据类型不对的问题
利用cv.imread读取图像,再利用plt.imshow发现图像显示出来色彩不对import cv2img = cv2.imread(img_path)原因cv2与matplotlib的显示模式不一致,opencv读取的彩色图像是BGR格式,Matplotlib显示彩色图像是RGB格式解决办法调整rgb显示模式利用img2 = cv2.merge([r,g,b])其他问...
2019-06-19 23:53:28 5648 1
原创 linux压缩文件夹
先安装 zip运行apt-get install zip(没有安装zip会报错zip: not found)接着使用cd命令进入到所要压缩的文件夹执行zip -r ./folder_name.zip ./*其中 -r表示递归(重复执行文件夹下的所有文件)folder_name.zip表示压缩后的文件名./* 表示压缩文件的保存位置(这里直接保存到了当前文件夹下)...
2019-05-16 14:41:21 2236
原创 运用spm中的coregister改变图像大小(图像重采样)
目的:改变图像大小(图像重采样)打开spm–fMRI–coregister出现下拉框如果只是对图像做重采样的话,选择reslice即可出现coregister界面:Image Defining Space 选择目标大小的图像(相当于一个模板)Images to Reslice 选择需要改变大小的图像选择完成后点击绿色箭头运行即可运行完毕后会在原图像的基础上生成一个r*开头的nii图...
2019-05-15 14:53:34 4800 2
原创 绘制ROC曲线(采用5折交叉验证,每训练一次绘制一条曲线,最后绘制一条平均ROC曲线)
已有data,label,model已定义好.定义5折交叉验证#定义n折交叉验证KF = KFold(n_splits = 5)载入sklearn和scipy模块from sklearn.metrics import roc_curve,aucfrom scipy import interp定义空列表用于保存每次的训练结果tprs=[]aucs=[]mean_fpr=np....
2019-04-13 23:14:48 26823 27
转载 利用sklearn载入iris数据集并利用感知机进行分类(三个类别)
**利用python中的sklearn模块输入特征进行鸢尾花的分类,最终实现三种鸢尾花的分类**import sklearnfrom sklearn import datasetsimport numpy as npfrom sklearn.model_selection import train_test_splitfrom sklearn.metrics import accur...
2019-04-12 10:41:30 9835
原创 tsfresh中利用select_features函数提取并过滤时间序列特征,所有特征被过滤掉的解决办法
首先利用tsfresh中的 extract_features 函数提取时间特征,过滤特征之前要先去除非数(NaN)利用impute函数然后利用select_features函数过滤特征可以看到所有特征都被过滤掉了,一个有用的特征都没能留下来解决办法:在select_features函数中加入fdr_level参数 features_filtered=select_featur...
2019-04-04 21:08:14 6044 6
原创 利用sklearn中的train_test_split从原始数据中随机划分训练集和测试集
from sklearn.model_selection import train_test_split#从原始数据中划分训练集和测试集X_tr, X_vld, lab_tr, lab_vld = train_test_split(X_train, labels_train, test_size...
2019-03-19 16:53:40 2163
原创 python下读取图片,并将图片转换为数组导出至本地
#画图import matplotlib.pyplot as plt#载入图片import matplotlib.image as mpimg#导出数组文件import numpy as np读取图片img = mpimg.imread('a.jpg')显示图片plt.imshow(img) 去除坐标轴plt.imshow(lena) plt.axis('off')...
2019-03-16 15:49:42 4792
原创 利用pandas分析表格中数据的相关性
先把数组形式的数据转换为DataFrame形式import pandas as pdpd_data = pd.DataFrame(array_data)显示各元素间的相关性pd_data.corr()筛选出相关性大于0.8且不等于1的数据pd_data.corr()[(pd_data.corr() > 0.8) & (pd_data.corr() != 1)]##...
2019-03-15 14:56:13 7629 1
原创 保存模型(model.save)与保存模型权重(model.save_weights)的区别
保存模型model.save('**.h5')将整个模型保存下来,以后直接载入模型与训练数据即可开始训练,不用再定义网络和编译模型.(这种方法已经保存了模型的结构和权重,以及损失函数和优化器)载入模型from keras.models import load_modelmodel.load_model('**.h5')保存模型权重model.save_weights('*...
2019-03-14 14:53:13 24253 1
原创 model.evaluate 和 model.predict 的区别
model.evaluate输入数据和标签,输出损失和精确度. # 评估模型 loss,accuracy = model.evaluate(X_test,Y_test) print('\ntest loss',loss) print('accuracy',accuracy)model.predict输入数据,输出预测结果(通常用在需要将预测结果与真实标签相比较的时候) #...
2019-03-14 14:28:38 93644 4
时间序列分类示例数据.zip
2020-06-30
xjview 一款用于显示激活脑区,查看结果报告的工具
2019-03-17
Nifti程序包,用于写入,读取和处理医学影像,适用于MATLAB
2018-09-29
《神经网络与深度学习(neural networks and deep learning)》中文版
2018-09-22
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人