1009: 安全路径

题目描述

卫斯理小说经常提及外星人,比如蓝血人。 在土星星球有很多城市,每个城市之间有一条或多条飞行通道, 但是并不是所有的路都是很安全的,每一条路有一个安全系数 s,s 是在 0和1 间的实数 (包括0 , 1) ,一条从 u 到 v 的通道 P 的安全度为 Safe(P) = s(e1)*s(e2)…*s(ek) e1,e2,ek是P 上的边 ,现在蓝血人想出去旅游,面对这这么多的路,他想找一条最安全的路。但是蓝血人的数学不好,想请你帮忙 ^_^ --

输入

输入包括多个测试实例,每个实例包括: 

第一行: 一个整数 n。 n 表示城市的个数 n<=1000; 
接着是一个 n*n 的矩阵表示两个城市之间的安全系数, (0可以理解为那两个城市之间没有直接的通道 )。 

接着是一个整数m (m<=100)表示若干个蓝血人要旅游的路线 ,下面每行有两个数字,表示蓝血人所在的城市和要去的城市。 

输出

如果蓝血人无法达到他的目的地,输出 "What a pity!" , 
其他的输出这两个城市之间的最安全道路的安全系数,保留三位小数。 

样例输入

3
1 0.5 0.5
0.5 1 0.4
0.5 0.4 1
3		
1 2
2 3
1 3

样例输出

0.500
0.400
0.500

【思路】由于只求少许两点之间的"最短距离",用Floyd时间复杂度大了,会时间超限,用Dijstra即可. 

其中weight[i]存放的是从起点到第i个顶点的"最短距离"(这里去权值最大),每次更新以后用新的顶点去探测其他没有被访问过顶点,取"最值"更新.

 

#include<iostream>
#include<algorithm>
#include<cstring>
#define max 1000
using namespace std;
double MG[max][max];
double weight[max];
bool vis[max];
int n;
int dij(int x,int y){
	//dij执行之后weight中存放的是x到其余各点的最短距离
	memset(vis,false,sizeof(vis));
	fill(weight,weight+max,0);
	weight[x]=1;//起点到自己是完全安全系数为1
	if(x==y)
		return 1;//起点和终点在同一位置
	//O(n^2)
	for(int i=1;i<=n;i++){
		int u=-1;
		double maxNum=0;
		for(int j=1;j<=n;j++){
			if(!vis[j]&&weight[j]>maxNum){
				u=j;
				maxNum=weight[j];
			}
		}
		if(u==-1)//起点与剩下的点不连通 
			return -1;
		if(u==y)//找到到达终点的最短路径 
			return 1;
		vis[u]=true;
		for(int v=1;v<=n;v++)
		{
			if(vis[v]==false&&MG[v][u]!=0&&weight[v]<weight[u]*MG[v][u])
				weight[v]=weight[u]*MG[v][u];//这里是乘 
		}	
	} 
}
int main(void)
{
	while(scanf("%d",&n)!=EOF){
		//初始化矩阵(每一次的矩阵大小不定,故而将最坏的情况的全部置0) 
		fill(MG[0],MG[0]+max*max,0);
		//存图 
		for(int i=1;i<=n;i++){
			for(int j=1;j<=n;j++){
				scanf("%lf",&MG[i][j]);
			}
		}
		int m;
		scanf("%d",&m);
		for(int i=1;i<=m;i++){
			int x,y;
			scanf("%d%d",&x,&y);//求点x和y之间安全系数 
			int res=dij(x,y);
			if(res==-1) printf("What a pity!");
			else printf("%.3lf\n",weight[y]); 
		} 		
		
	}
	return 0;
}

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值