[NOIP车站P1011]([P1011 NOIP1998 提高组] 车站 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn))
题目描述
火车从始发站(称为第1站)开出,在始发站上车的人数为 a,然后到达第2站,在第2站有人上、下车,但上、下车的人数相同,因此在第2站开出时(即在到达第3站之前)车上的人数保持为a人。从第3站起(包括第3站)上、下车的人数有一定规律:上车的人数都是前两站上车人数之和,而下车人数等于上一站上车人数,一直到终点站的前一站(第n-1站),都满足此规律。现给出的条件是:共有n个车站,始发站上车的人数为a,最后一站下车的人数是m(全部下车)。试问第x站开出时车上的人数是多少?
输入格式
输入只有一行四个整数,分别表示始发站上车人数a,车站数n,终点站下车人数m和所求的站点编号x。
输出格式
输出一行一个整数表示答案:从x站开出时车上的人数。
样例 #1
样例输入 #1
5 7 32 4
样例输出 #1
13
提示
对于全部的测试点,保证1<=a<=20,1<=x<=n<=20,1<=m<=20000。
题解
设第二站上下车人数为b,则根据题意可得出以下表格:
| 站台数n | 1 | 2 | 3 | 4 | 5 | 6 | n-1 | n |
|---|---|---|---|---|---|---|---|---|
| 上车人数 | a | b | a+b | a+2b | 2a+3b | 3a+5b | ? | 0 |
| 下车人数 | 0 | b | b | a+b | a+2b | 2a+3b | ? | m |
| 净增长人数 | a | 0 | a | 0*a+b | a+b | a+2b | ? | -m |
| 总人数 | a | a | 2a | 2a+b | 3a+2b | 4a+4b | m | 0 |
根据表格,笔者发现结论:从第二站开始,当前站的总人数=当前站的上车人数-第二站的上车人数+第一站的上车人数。
例如,第2站的总人数为:b-b+a=a
第3站的总人数为:a+b-b+a=2a
第4站的总人数为:a+2b-b+a=2a+b
-
于是构建一个斐波那契数列g(1)=0,g(2)=1,g(3)=1,g(4)=2…
-
从第2站开始,上车人数=g(n-1)a+g(n)b
-
所以从第2站开始,运用结论可得总人数=g(n-1)a+g(n)b-b+a
-
于是通过倒数第二站总人数为m列出方程:g(n-2)a+g(n-1)b-b+a=m即b=(m-g(n-2)a-a)/(g(n-1)-1) (n>=3)
-
所以第x站的总人数为g(x-1)a+g(x)b-b+a (x>=3) 其中b已经用已知量表示。
-
最后列出x=1,x=2,x=n的特殊情况即可。
code:
#include <stdio.h>
#include <stdlib.h>
int fab(int n) {
if (n == 1) {
return 0;
}
if (n == 2) {
return 1;
}
int a = 0, b = 1, result;
for (int i = 3; i <= n; ++i) {
result = a + b;
a = b;
b = result;
}
return result;
}
int main()
{
int a, n, m, x;
scanf("%d %d %d %d", &a, &n, &m, &x);
int b = (m - fab(n - 2) * a - a) / (fab(n - 1) - 1);
if(x == 1){
printf("%d", a);
}
else if(x == 2){
printf("%d", a);
}
else if(x == n){
printf("%d", m);
}
else{
printf("%d", fab(x - 1) * a + fab(x) * b - b + a);
}
return 0;
}

3559

被折叠的 条评论
为什么被折叠?



