洛谷P1011车站问题题解

[NOIP车站P1011]([P1011 NOIP1998 提高组] 车站 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn))

题目描述

火车从始发站(称为第1站)开出,在始发站上车的人数为 a,然后到达第2站,在第2站有人上、下车,但上、下车的人数相同,因此在第2站开出时(即在到达第3站之前)车上的人数保持为a人。从第3站起(包括第3站)上、下车的人数有一定规律:上车的人数都是前两站上车人数之和,而下车人数等于上一站上车人数,一直到终点站的前一站(第n-1站),都满足此规律。现给出的条件是:共有n个车站,始发站上车的人数为a,最后一站下车的人数是m(全部下车)。试问第x站开出时车上的人数是多少?

输入格式

输入只有一行四个整数,分别表示始发站上车人数a,车站数n,终点站下车人数m和所求的站点编号x。

输出格式

输出一行一个整数表示答案:从x站开出时车上的人数。

样例 #1

样例输入 #1

5 7 32 4

样例输出 #1

13

提示

对于全部的测试点,保证1<=a<=20,1<=x<=n<=20,1<=m<=20000。

题解

设第二站上下车人数为b,则根据题意可得出以下表格:

站台数n123456n-1n
上车人数aba+ba+2b2a+3b3a+5b?0
下车人数0bba+ba+2b2a+3b?m
净增长人数a0a0*a+ba+ba+2b?-m
总人数aa2a2a+b3a+2b4a+4bm0

根据表格,笔者发现结论:从第二站开始,当前站的总人数=当前站的上车人数-第二站的上车人数+第一站的上车人数。

例如,第2站的总人数为:b-b+a=a

第3站的总人数为:a+b-b+a=2a

第4站的总人数为:a+2b-b+a=2a+b

  1. 于是构建一个斐波那契数列g(1)=0,g(2)=1,g(3)=1,g(4)=2…

  2. 从第2站开始,上车人数=g(n-1)a+g(n)b

  3. 所以从第2站开始,运用结论可得总人数=g(n-1)a+g(n)b-b+a

  4. 于是通过倒数第二站总人数为m列出方程:g(n-2)a+g(n-1)b-b+a=m即b=(m-g(n-2)a-a)/(g(n-1)-1) (n>=3)

  5. 所以第x站的总人数为g(x-1)a+g(x)b-b+a (x>=3) 其中b已经用已知量表示。

  6. 最后列出x=1,x=2,x=n的特殊情况即可。

code:

#include <stdio.h>
#include <stdlib.h>
int fab(int n) {
    if (n == 1) {
        return 0;
    }
    if (n == 2) {
        return 1;
    }
    int a = 0, b = 1, result;
    for (int i = 3; i <= n; ++i) {
        result = a + b;
        a = b;
        b = result;
    }
    return result;
}
int main()
{
    int a, n, m, x;
    scanf("%d %d %d %d", &a, &n, &m, &x);
    int b = (m - fab(n - 2) * a - a) / (fab(n - 1) - 1);
    if(x == 1){
        printf("%d", a);
    }
    else if(x == 2){
        printf("%d", a);
    }
    else if(x == n){
        printf("%d", m);
    } 
    else{
        printf("%d", fab(x - 1) * a + fab(x) * b - b + a);
    }
    return 0;
}

P1011车站

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值