最短路板子及其应用

最短路板子及其应用

1. 经典最短路算法分析

image-20240601180958679

2. 朴素dijkstra算法板子:
  1. 首先迭代n次,每次迭代更新一个点到起点的距离。即dist[]。
  2. 找到一个不在集合中的点且这个点到起点的距离最小。
  3. 将这个点加入集合当中。
  4. 用这个点更新其他点到起点的距离。
849. Dijkstra求最短路 I - AcWing题库
#include <bits/stdc++.h>
using namespace std;
const int N = 510;

int g[N][N];
int n, m;
bool st[N];
int dist[N];

int dijkstra(){
	memset(dist, 0x3f, sizeof dist);
	dist[1] = 0;
	for(int i = 0; i < n; i++){
		int t = -1;
		for(int j = 1; j <= n; j++){
			if(!st[j] && (t == - 1 || dist[t] > dist[j])){
				t = j;
			}
		}
		st[t] = true;
		for(int i = 1; i <= n; i++){
			dist[i] = min(dist[i], dist[t] + g[t][i]);
		}
	}
	if(dist[n] == 0x3f3f3f3f) return -1;
	return dist[n];
}

int main()
{
	ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
	cin >> n >> m;
	memset(g, 0x3f, sizeof g);
	for(int i = 0; i < m; i++){
		int a, b, c;
		cin >> a >> b >> c;
		g[a][b] = min(g[a][b], c);
	}	
	int t = dijkstra();
	cout << t << endl;
	return 0;
}

3. 堆优化版dijkstra算法板子:

​ 我们注意到,每次找到不在集合中的点的时间复杂度最高。故我们采用小根堆,其可以有效解决这个问题。

850. Dijkstra求最短路 II - AcWing题库
#include <bits/stdc++.h>
using namespace std;

int n, m;
const int N = 150010;
int e[2 * N], ne[2 * N], idx = 0, h[N], w[2 * N];
bool st[N];
int dist[N];

void add(int a, int b, int c){
    e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx++;
}

priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> heap;
int dijkstra(){
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    heap.push({0, 1});
    while(heap.size()){
        auto temp = heap.top();
        int dis = temp.first, ver = temp.second;
        heap.pop();
        if(st[ver]) continue;
        st[ver] = true;
        for(int i = h[ver]; i != -1; i = ne[i]){
            int j = e[i];
            if(dist[j] > dist[ver] + w[i]){
                dist[j] = dist[ver] + w[i];
                heap.push({dist[j], j});
            }
        }
    }
    if(dist[n] == 0x3f3f3f3f) return -1;
    return dist[n];
}

int main()
{
    ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
    cin >> n >> m;
    memset(h, -1, sizeof h);
    for(int i = 0; i < m; i++){
        int a, b, c;
        cin >> a >> b >> c;
        add(a, b, c);
    }    
    cout << dijkstra() << endl;
    return 0;
}
4. Bellman-ford算法板子:
  1. 我们存图采用简单的结构体。
  2. 其原理非常简单:一个有n个点的图,给每个点n次机会查询邻居,是否有到起点更短的路径,如果有就更新。
  3. 板子中第一层循环表示最多经过k条边的最短路。故我们更新下一层时,要拿上一层的状态更新。所以我们使用backup(备份)数组来存上一层的状态。
  4. 之后枚举每条边,更新距离。
  5. 其次,Bellman-ford算法可以用来检查是否存在负权回路:如果在进行完k轮操作后,仍可以继续完成松弛操作,那么此图必然存在负权回路。
853. 有边数限制的最短路 - AcWing题库
#include <bits/stdc++.h>
using namespace std;

int n, m, k;
const int N = 510, M = 10010;
int dist[N], backup[N];

struct e{
    int a, b, w;
}e[M];

void bellman_ford(){
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    for(int i = 0; i < k; i++){
        memcpy(backup, dist, sizeof dist);
        for(int j = 0; j < m; j++){
            int a = e[j].a, b = e[j].b, w = e[j].w;
            dist[b] = min(dist[b], backup[a] + w);
        }
    }
    if(dist[n] > 0x3f3f3f3f / 2){
        cout << "impossible" << endl;
        return;
    }
    cout << dist[n] << endl;
    return;
}

int main() {
    ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
    cin >> n >> m >> k;
    for(int i = 0; i < m; i++){
        int a, b, w;
        cin >> a >> b >> w;
        e[i] = {a, b, w};
    }
    bellman_ford();
    return 0;
}
5. SPFA算法板子:
  1. SPFA是Bellman-Ford算法的改进,也可以说,SPFA是用队列优化的Bellman-ford算法。
  2. st数组用来记录点是否在队列中。
#include <bits/stdc++.h>
using namespace std;

const int N = 100010;
int e[N], ne[N], idx, h[N], w[N];
int n, m;
int dist[N];
bool st[N];

void add(int a, int b, int c){
    e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx ++;
}

void spfa(){
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    queue<int> q;
    q.push(1);
    st[1] = true;
    while(q.size()){
        int sz = q.size();
        for(int k = 0; k < sz; k ++){
            auto temp = q.front();
            q.pop();
            st[temp] = false;
            for(int i = h[temp]; i != -1; i = ne[i]){
                int j = e[i];
                if(dist[j] > dist[temp] + w[i]){
                    dist[j] = dist[temp] + w[i];
                    if(!st[j]){
                        q.push(j);
                        st[j] = true;
                    }
                }
            }
        }
    }
    if(dist[n] == 0x3f3f3f3f){
        cout << "impossible" << endl;
        return;
    }
    cout << dist[n] << endl;
    return;
}

int main() {
    ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
    cin >> n >> m;
    memset(h, -1, sizeof h);
    for(int i = 0; i < m; i ++){
        int a, b, w;
        cin >> a >> b >> w;
        add(a, b, w);
    }
    spfa();
    return 0;
}
6. SPFA判断负环板子:
  1. cnt数组表示当前1~x的边的数量。若cnt >= n 则证明从1~x至少经过了n条边(n + 1个点)。有抽屉原理可知,至少有两个点的编号一样,即存在负权回路。
852. spfa判断负环 - AcWing题库
#include <bits/stdc++.h>
using namespace std;

int n, m;
const int N = 2010, M = 10010;
int e[M], ne[M], idx, h[N], w[M], cnt[N], dist[N];
bool st[N];

void add(int a, int b, int c){
    e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx ++;
}

void spfa(){
    memset(dist, 0x3f, sizeof dist);
    queue<int> q;
    for(int i = 1; i <= n; i++){
        q.push(i);
        st[i] = true;
    }
    while(q.size()){
        int sz = q.size();
        for(int k = 0; k < sz; k++){
            auto temp = q.front();
            q.pop();
            st[temp] = false;
            for(int i = h[temp]; i != -1; i = ne[i]){
                int j = e[i];
                if(dist[j] > dist[temp] + w[i]){
                    dist[j] = dist[temp] + w[i];
                    cnt[j] = cnt[temp] + 1;
                    if(cnt[j] >= n){
                        cout << "Yes" << endl;
                        return;
                    }
                    if(!st[j]){
                        q.push(j);
                        st[j] = true;
                    }
                }
            }
        }
    }
    cout << "No" << endl;
    return;
}

int main() {
    ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
    memset(h, -1, sizeof h);
    cin >> n >> m;
    for(int i = 0; i < m; i++){
        int a, b, w;
        cin >> a >> b >> w;
        add(a, b, w);
    }
    spfa();
    return 0;
}
7. Floyd算法板子:
  1. 三层循环更新邻接矩阵,更新完毕后得到最短路。
854. Floyd求最短路 - AcWing题库
#include <bits/stdc++.h>
using namespace std;

int n, m, k;
const int N = 210, M = 20010;
int g[N][N];
int INF = 0x3f3f3f3f;

void floyd(){
    for(int k = 1; k <= n; k++){
        for(int i = 1; i <= n; i++){
            for(int j = 1; j <= n; j++){
                g[i][j] = min(g[i][j], g[i][k] + g[k][j]);
            }
        }
    }
}

void solve(){
    int a, b;
    cin >> a >> b;
    if(g[a][b] > INF / 2) cout << "impossible" << endl;
    else cout << g[a][b] << endl;
}

int main() {
    ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
    cin >> n >> m >> k;
    for(int i = 1; i <= n; i++){
        for(int j = 1; j <= n; j++){
            if(i == j) g[i][j] = 0;
            else g[i][j] = INF;
        }
    }
    for(int i = 0; i < m; i++){
        int a, b, w;
        cin >> a >> b >> w;
        g[a][b] = min(g[a][b], w);
    }   
    floyd();
    for(int i = 0; i < k; i++){
        solve();
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值