最短路板子及其应用
1. 经典最短路算法分析

2. 朴素dijkstra算法板子:
- 首先迭代n次,每次迭代更新一个点到起点的距离。即dist[]。
- 找到一个不在集合中的点且这个点到起点的距离最小。
- 将这个点加入集合当中。
- 用这个点更新其他点到起点的距离。
849. Dijkstra求最短路 I - AcWing题库
#include <bits/stdc++.h>
using namespace std;
const int N = 510;
int g[N][N];
int n, m;
bool st[N];
int dist[N];
int dijkstra(){
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
for(int i = 0; i < n; i++){
int t = -1;
for(int j = 1; j <= n; j++){
if(!st[j] && (t == - 1 || dist[t] > dist[j])){
t = j;
}
}
st[t] = true;
for(int i = 1; i <= n; i++){
dist[i] = min(dist[i], dist[t] + g[t][i]);
}
}
if(dist[n] == 0x3f3f3f3f) return -1;
return dist[n];
}
int main()
{
ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
cin >> n >> m;
memset(g, 0x3f, sizeof g);
for(int i = 0; i < m; i++){
int a, b, c;
cin >> a >> b >> c;
g[a][b] = min(g[a][b], c);
}
int t = dijkstra();
cout << t << endl;
return 0;
}
3. 堆优化版dijkstra算法板子:
我们注意到,每次找到不在集合中的点的时间复杂度最高。故我们采用小根堆,其可以有效解决这个问题。
850. Dijkstra求最短路 II - AcWing题库
#include <bits/stdc++.h>
using namespace std;
int n, m;
const int N = 150010;
int e[2 * N], ne[2 * N], idx = 0, h[N], w[2 * N];
bool st[N];
int dist[N];
void add(int a, int b, int c){
e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx++;
}
priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> heap;
int dijkstra(){
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
heap.push({0, 1});
while(heap.size()){
auto temp = heap.top();
int dis = temp.first, ver = temp.second;
heap.pop();
if(st[ver]) continue;
st[ver] = true;
for(int i = h[ver]; i != -1; i = ne[i]){
int j = e[i];
if(dist[j] > dist[ver] + w[i]){
dist[j] = dist[ver] + w[i];
heap.push({dist[j], j});
}
}
}
if(dist[n] == 0x3f3f3f3f) return -1;
return dist[n];
}
int main()
{
ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
cin >> n >> m;
memset(h, -1, sizeof h);
for(int i = 0; i < m; i++){
int a, b, c;
cin >> a >> b >> c;
add(a, b, c);
}
cout << dijkstra() << endl;
return 0;
}
4. Bellman-ford算法板子:
- 我们存图采用简单的结构体。
- 其原理非常简单:一个有n个点的图,给每个点n次机会查询邻居,是否有到起点更短的路径,如果有就更新。
- 板子中第一层循环表示最多经过k条边的最短路。故我们更新下一层时,要拿上一层的状态更新。所以我们使用backup(备份)数组来存上一层的状态。
- 之后枚举每条边,更新距离。
- 其次,Bellman-ford算法可以用来检查是否存在负权回路:如果在进行完k轮操作后,仍可以继续完成松弛操作,那么此图必然存在负权回路。
853. 有边数限制的最短路 - AcWing题库
#include <bits/stdc++.h>
using namespace std;
int n, m, k;
const int N = 510, M = 10010;
int dist[N], backup[N];
struct e{
int a, b, w;
}e[M];
void bellman_ford(){
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
for(int i = 0; i < k; i++){
memcpy(backup, dist, sizeof dist);
for(int j = 0; j < m; j++){
int a = e[j].a, b = e[j].b, w = e[j].w;
dist[b] = min(dist[b], backup[a] + w);
}
}
if(dist[n] > 0x3f3f3f3f / 2){
cout << "impossible" << endl;
return;
}
cout << dist[n] << endl;
return;
}
int main() {
ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
cin >> n >> m >> k;
for(int i = 0; i < m; i++){
int a, b, w;
cin >> a >> b >> w;
e[i] = {a, b, w};
}
bellman_ford();
return 0;
}
5. SPFA算法板子:
- SPFA是Bellman-Ford算法的改进,也可以说,SPFA是用队列优化的Bellman-ford算法。
- st数组用来记录点是否在队列中。
#include <bits/stdc++.h>
using namespace std;
const int N = 100010;
int e[N], ne[N], idx, h[N], w[N];
int n, m;
int dist[N];
bool st[N];
void add(int a, int b, int c){
e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx ++;
}
void spfa(){
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
queue<int> q;
q.push(1);
st[1] = true;
while(q.size()){
int sz = q.size();
for(int k = 0; k < sz; k ++){
auto temp = q.front();
q.pop();
st[temp] = false;
for(int i = h[temp]; i != -1; i = ne[i]){
int j = e[i];
if(dist[j] > dist[temp] + w[i]){
dist[j] = dist[temp] + w[i];
if(!st[j]){
q.push(j);
st[j] = true;
}
}
}
}
}
if(dist[n] == 0x3f3f3f3f){
cout << "impossible" << endl;
return;
}
cout << dist[n] << endl;
return;
}
int main() {
ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
cin >> n >> m;
memset(h, -1, sizeof h);
for(int i = 0; i < m; i ++){
int a, b, w;
cin >> a >> b >> w;
add(a, b, w);
}
spfa();
return 0;
}
6. SPFA判断负环板子:
- cnt数组表示当前1~x的边的数量。若cnt >= n 则证明从1~x至少经过了n条边(n + 1个点)。有抽屉原理可知,至少有两个点的编号一样,即存在负权回路。
852. spfa判断负环 - AcWing题库
#include <bits/stdc++.h>
using namespace std;
int n, m;
const int N = 2010, M = 10010;
int e[M], ne[M], idx, h[N], w[M], cnt[N], dist[N];
bool st[N];
void add(int a, int b, int c){
e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx ++;
}
void spfa(){
memset(dist, 0x3f, sizeof dist);
queue<int> q;
for(int i = 1; i <= n; i++){
q.push(i);
st[i] = true;
}
while(q.size()){
int sz = q.size();
for(int k = 0; k < sz; k++){
auto temp = q.front();
q.pop();
st[temp] = false;
for(int i = h[temp]; i != -1; i = ne[i]){
int j = e[i];
if(dist[j] > dist[temp] + w[i]){
dist[j] = dist[temp] + w[i];
cnt[j] = cnt[temp] + 1;
if(cnt[j] >= n){
cout << "Yes" << endl;
return;
}
if(!st[j]){
q.push(j);
st[j] = true;
}
}
}
}
}
cout << "No" << endl;
return;
}
int main() {
ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
memset(h, -1, sizeof h);
cin >> n >> m;
for(int i = 0; i < m; i++){
int a, b, w;
cin >> a >> b >> w;
add(a, b, w);
}
spfa();
return 0;
}
7. Floyd算法板子:
- 三层循环更新邻接矩阵,更新完毕后得到最短路。
854. Floyd求最短路 - AcWing题库
#include <bits/stdc++.h>
using namespace std;
int n, m, k;
const int N = 210, M = 20010;
int g[N][N];
int INF = 0x3f3f3f3f;
void floyd(){
for(int k = 1; k <= n; k++){
for(int i = 1; i <= n; i++){
for(int j = 1; j <= n; j++){
g[i][j] = min(g[i][j], g[i][k] + g[k][j]);
}
}
}
}
void solve(){
int a, b;
cin >> a >> b;
if(g[a][b] > INF / 2) cout << "impossible" << endl;
else cout << g[a][b] << endl;
}
int main() {
ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
cin >> n >> m >> k;
for(int i = 1; i <= n; i++){
for(int j = 1; j <= n; j++){
if(i == j) g[i][j] = 0;
else g[i][j] = INF;
}
}
for(int i = 0; i < m; i++){
int a, b, w;
cin >> a >> b >> w;
g[a][b] = min(g[a][b], w);
}
floyd();
for(int i = 0; i < k; i++){
solve();
}
return 0;
}
456

被折叠的 条评论
为什么被折叠?



