小技巧1:如何使用map对某些列做特征工程?
先生成数据:
d = {
"gender":["male", "female", "male","female"],
"color":["red", "green", "blue","green"],
"age":[25, 30, 15, 32]
}
df = pd.DataFrame(d)
df

在 gender 列上,使用 map 方法,快速完成如下映射:
d = {"male": 0, "female": 1}
df["gender2"] = df["gender"].map(d)

小技巧2:使用 replace 和正则清洗数据
Pandas 的强项在于数据分析,自然就少不了数据清洗。
一个快速清洗数据的小技巧,在某列上使用 replace 方法和正则,快速完成值的清洗。
源数据:
d = {"customer": ["A", "B", "C", &

本文分享了Pandas数据处理的五个实用技巧:1. 使用map进行特征工程;2. 结合replace和正则表达式清洗数据;3. 利用melt进行数据透视分析;4. 通过year和dayofyear转换为datetime;5. 将低频分类归为'others'。
最低0.47元/天 解锁文章
424

被折叠的 条评论
为什么被折叠?



