作者:黄青石
https://zhuanlan.zhihu.com/p/56135195
随着现在分布式越来越普遍,分布式锁也十分常用,这篇文章解释了使用zookeeper实现分布式锁,本次咱们说一下如何用Redis实现分布式锁和分布限流。
cnblogs.com/huangqingshi/p/9650837.html
Redis有个事务锁,就是如下的命令,这个命令的含义是将一个value设置到一个key中,如果不存在将会赋值并且设置超时时间为30秒,如何这个key已经存在了,则不进行设置。
-
SET key value NX PX 30000
这个事务锁很好的解决了两个单独的命令,一个设置set key value nx,即该key不存在的话将对其进行设置,另一个是expire key seconds,设置该key的超时时间。我们可以想一下,如果这两个命令用程序单独使用会存在什么问题:
-
如果一个set key的命令设置了key,然后程序异常了,expire时间没有设置,那么这个key会一直锁住。
-
如果一个set key时出现了异常,但是直接执行了expire,过了一会儿之后另一个进行set key,还没怎么执行代码,结果key过期了,别的线程也进入了锁。
还有很多出问题的可能点,这里我们就不讨论了,下面咱们来看看如何实现吧。
本文使用的Spring Boot 2.x + Spring data redis + Swagger +lombok + AOP + lua脚本。在实现的过程中遇到了很多问题,都一一解决实现了。
依赖的POM文件如下:
-
<?xml version="1.0" encoding="UTF-8"?> -
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" -
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> -
<modelVersion>4.0.0</modelVersion> -
<parent> -
<groupId>org.springframework.boot</groupId> -
<artifactId>spring-boot-starter-parent</artifactId> -
<version>2.1.2.RELEASE</version> -
<relativePath/> <!-- lookup parent from repository --> -
</parent> -
<groupId>com.hqs</groupId> -
<artifactId>distributedlock</artifactId> -
<version>0.0.1-SNAPSHOT</version> -
<name>distributedlock</name> -
<description>Demo project for Spring Boot</description> -
-
<properties> -
<java.version>1.8</java.version> -
</properties> -
-
<dependencies> -
<dependency> -
<groupId>org.springframework.boot</groupId> -
<artifactId>spring-boot-starter-aop</artifactId> -
</dependency> -
<dependency> -
<groupId>org.springframework.boot</groupId> -
<artifactId>spring-boot-starter-web</artifactId> -
</dependency> -
<dependency> -
<groupId>org.springframework.boot</groupId> -
<artifactId>spring-boot-starter-data-redis</artifactId> -
</dependency> -
<dependency> -
<groupId>org.springframework.boot</groupId> -
<artifactId>spring-boot-devtools</artifactId> -
<scope>runtime</scope> -
</dependency> -
<dependency> -
<groupId>org.projectlombok</groupId> -
<artifactId>lombok</artifactId> -
<optional>true</optional> -
</dependency> -
<dependency> -
<groupId>org.springframework.boot</groupId> -
<artifactId>spring-boot-starter-test</artifactId> -
<scope>test</scope> -
</dependency> -
<dependency> -
<groupId>io.springfox</groupId> -
<artifactId>springfox-swagger-ui</artifactId> -
<version>2.9.2</version> -
</dependency> -
<dependency> -
<groupId>io.springfox</groupId> -
<artifactId>springfox-swagger2</artifactId> -
<version>2.9.2</version> -
<scope>compile</scope> -
</dependency> -
<dependency> -
<groupId>redis.clients</groupId> -
<artifactId>jedis</artifactId> -
<version>2.9.0</version> -
</dependency> -
</dependencies> -
-
<build> -
<plugins> -
<plugin> -
<groupId>org.springframework.boot</groupId> -
<artifactId>spring-boot-maven-plugin</artifactId> -
</plugin> -
</plugins> -
</build> -
-
</project>
使用了两个lua脚本,一个用于执行lock,另一个执行unlock。
咱们简单看一下,lock脚本就是采用Redis事务执行的set nx px命令,其实还有set nx ex命令,这个ex命令是采用秒的方式进行设置过期时间,这个px是采用毫秒的方式设置过期时间。
value需要使用一个唯一的值,这个值在解锁的时候需要判断是否一致,如果一致的话就进行解锁。这个也是官方推荐的方法。另外在lock的地方我设置了一个result,用于输出测试时的结果,这样就可以结合程序去进行debug了。
-
local expire = tonumber(ARGV[2]) -
local ret = redis.call('set', KEYS[1], ARGV[1], 'NX', 'PX', expire) -
local strret = tostring(ret) -
//用于查看结果,我本机获取锁成功后程序返回随机结果"table: 0x7fb4b3700fe0",否则返回"false" -
redis.call('set', 'result', strret) -
if strret == 'false' then -
return false -
else -
return true -
end
-
redis.call('del', 'result') -
if redis.call('get', KEYS[1]) == ARGV[1] then -
return redis.call('del', KEYS[1]) -
else -
return 0 -
end
来看下代码,主要写了两个方法,一个是用与锁另外一个是用于结解锁。这块需要注意的是使用RedisTemplate,这块意味着key和value一定都是String的,我在使用的过程中就出现了一些错误。首先初始化两个脚本到程序中,然后调用执行脚本。
-
package com.hqs.distributedlock.lock; -
-
-
import lombok.extern.slf4j.Slf4j; -
import org.springframework.beans.factory.annotation.Autowired; -
import org.springframework.data.redis.core.RedisTemplate; -
import org.springframework.data.redis.core.script.RedisScript; -
import org.springframework.stereotype.Component; -
-
import java.util.Collections; -
-
@Slf4j -
@Component -
public class DistributedLock { -
-
//注意RedisTemplate用的String,String,后续所有用到的key和value都是String的 -
@Autowired -
private RedisTemplate<String, String> redisTemplate; -
-
@Autowired -
RedisScript<Boolean> lockScript; -
-
@Autowired -
RedisScript<Long> unlockScript; -
-
public Boolean distributedLock(String key, String uuid, String secondsToLock) { -
Boolean locked = false; -
try { -
String millSeconds = String.valueOf(Integer.parseInt(secondsToLock) * 1000); -
locked =redisTemplate.execute(lockScript, Collections.singletonList(key), uuid, millSeconds); -
log.info("distributedLock.key{}: - uuid:{}: - timeToLock:{} - locked:{} - millSeconds:{}", -
key, uuid, secondsToLock, locked, millSeconds); -
} catch (Exception e) { -
log.error("error", e); -
} -
return locked; -
} -
-
public void distributedUnlock(String key, String uuid) { -
Long unlocked = redisTemplate.execute(unlockScript, Collections.singletonList(key), -
uuid); -
log.info("distributedLock.key{}: - uuid:{}: - unlocked:{}", key, uuid, unlocked); -
-
} -
-
}
还有一个就是脚本定义的地方需要注意,返回的结果集一定是Long, Boolean,List, 一个反序列化的值。这块要注意。
-
package com.hqs.distributedlock.config; -
-
-
import com.sun.org.apache.xpath.internal.operations.Bool; -
import lombok.extern.slf4j.Slf4j; -
import org.springframework.beans.factory.annotation.Qualifier; -
import org.springframework.context.annotation.Bean; -
import org.springframework.context.annotation.Configuration; -
import org.springframework.core.io.ClassPathResource; -
import org.springframework.data.redis.core.script.DefaultRedisScript; -
import org.springframework.data.redis.core.script.RedisScript; -
import org.springframework.scripting.ScriptSource; -
import org.springframework.scripting.support.ResourceScriptSource; -
-
-
@Configuration -
@Slf4j -
public class BeanConfiguration { -
-
/** -
* The script resultType should be one of -
* Long, Boolean, List, or a deserialized value type. It can also be null if the script returns -
* a throw-away status (specifically, OK). -
* @return -
*/ -
@Bean -
public RedisScript<Long> limitScript() { -
RedisScript redisScript = null; -
try { -
ScriptSource scriptSource = new ResourceScriptSource(new ClassPathResource("/scripts/limit.lua")); -
// log.info("script:{}", scriptSource.getScriptAsString()); -
redisScript = RedisScript.of(scriptSource.getScriptAsString(), Long.class); -
} catch (Exception e) { -
log.error("error", e); -
} -
return redisScript; -
-
} -
-
@Bean -
public RedisScript<Boolean> lockScript() { -
RedisScript<Boolean> redisScript = null; -
try { -
ScriptSource scriptSource = new ResourceScriptSource(new ClassPathResource("/scripts/lock.lua")); -
redisScript = RedisScript.of(scriptSource.getScriptAsString(), Boolean.class); -
} catch (Exception e) { -
log.error("error" , e); -
} -
return redisScript; -
} -
-
@Bean -
public RedisScript<Long> unlockScript() { -
RedisScript<Long> redisScript = null; -
try { -
ScriptSource scriptSource = new ResourceScriptSource(new ClassPathResource("/scripts/unlock.lua")); -
redisScript = RedisScript.of(scriptSource.getScriptAsString(), Long.class); -
} catch (Exception e) { -
log.error("error" , e); -
} -
return redisScript; -
} -
-
-
@Bean -
public RedisScript<Long> limitAnother() { -
DefaultRedisScript<Long> redisScript = new DefaultRedisScript<>(); -
redisScript.setScriptSource(new ResourceScriptSource(new ClassPathResource("/scripts/limit.lua"))); -
redisScript.setResultType(Long.class); -
return redisScript; -
} -
-
}
好了,这块就写好了,然后写好controller类准备测试。
-
@PostMapping("/distributedLock") -
@ResponseBody -
public String distributedLock(String key, String uuid, String secondsToLock, String userId) throws Exception{ -
// String uuid = UUID.randomUUID().toString(); -
Boolean locked = false; -
try { -
locked = lock.distributedLock(key, uuid, secondsToLock); -
if(locked) { -
log.info("userId:{} is locked - uuid:{}", userId, uuid); -
log.info("do business logic"); -
TimeUnit.MICROSECONDS.sleep(3000); -
} else { -
log.info("userId:{} is not locked - uuid:{}", userId, uuid); -
} -
} catch (Exception e) { -
log.error("error", e); -
} finally { -
if(locked) { -
lock.distributedUnlock(key, uuid); -
} -
} -
-
return "ok"; -
}
我也写了一个测试类,用于测试和输出结果, 使用100个线程,然后锁的时间设置10秒,controller里边需要休眠3秒模拟业务执行。
-
@Test -
public void distrubtedLock() { -
String url = "http://localhost:8080/distributedLock"; -
String uuid = "abcdefg"; -
// log.info("uuid:{}", uuid); -
String key = "redisLock"; -
String secondsToLive = "10"; -
-
for(int i = 0; i < 100; i++) { -
final int userId = i; -
new Thread(() -> { -
MultiValueMap<String, String> params = new LinkedMultiValueMap<>(); -
params.add("uuid", uuid); -
params.add("key", key); -
params.add("secondsToLock", secondsToLive); -
params.add("userId", String.valueOf(userId)); -
String result = testRestTemplate.postForObject(url, params, String.class); -
System.out.println("-------------" + result); -
} -
).start(); -
} -
-
}
获取锁的地方就会执行do business logic, 然后会有部分线程获取到锁并执行业务,执行完业务的就会释放锁。
![]()
分布式锁就实现好了,接下来实现分布式限流。先看一下limit的lua脚本,需要给脚本传两个值,一个值是限流的key,一个值是限流的数量。
获取当前key,然后判断其值是否为nil,如果为nil的话需要赋值为0,然后进行加1并且和limit进行比对,如果大于limt即返回0,说明限流了,如果小于limit则需要使用Redis的INCRBY key 1,就是将key进行加1命令。并且设置超时时间,超时时间是秒,并且如果有需要的话这个秒也是可以用参数进行设置。
-
//lua 下标从 1 开始 -
// 限流 key -
local key = KEYS[1] -
//限流大小 -
local limit = tonumber(ARGV[1]) -
-
// 获取当前流量大小 -
local curentLimit = tonumber(redis.call('get', key) or "0") -
-
if curentLimit + 1 > limit then -
// 达到限流大小 返回 -
return 0; -
else -
// 没有达到阈值 value + 1 -
redis.call("INCRBY", key, 1) -
// EXPIRE后边的单位是秒 -
redis.call("EXPIRE", key, 10) -
return curentLimit + 1 -
end -
执行limit的脚本和执行lock的脚本类似。
-
package com.hqs.distributedlock.limit; -
-
import lombok.extern.slf4j.Slf4j; -
import org.springframework.beans.factory.annotation.Autowired; -
import org.springframework.data.redis.core.RedisTemplate; -
import org.springframework.data.redis.core.script.RedisScript; -
import org.springframework.stereotype.Component; -
-
import java.util.Collections; -
-
/** -
* @author huangqingshi -
* @Date 2019-01-17 -
*/ -
@Slf4j -
@Component -
public class DistributedLimit { -
-
//注意RedisTemplate用的String,String,后续所有用到的key和value都是String的 -
@Autowired -
private RedisTemplate<String, String> redisTemplate; -
-
-
@Autowired -
RedisScript<Long> limitScript; -
-
public Boolean distributedLimit(String key, String limit) { -
Long id = 0L; -
-
try { -
id = redisTemplate.execute(limitScript, Collections.singletonList(key), -
limit); -
log.info("id:{}", id); -
} catch (Exception e) { -
log.error("error", e); -
} -
-
if(id == 0L) { -
return false; -
} else { -
return true; -
} -
} -
-
}
接下来咱们写一个限流注解,并且设置注解的key和限流的大小:
-
package com.hqs.distributedlock.annotation; -
-
import java.lang.annotation.ElementType; -
import java.lang.annotation.Retention; -
import java.lang.annotation.RetentionPolicy; -
import java.lang.annotation.Target; -
-
/** -
* 自定义limit注解 -
* @author huangqingshi -
* @Date 2019-01-17 -
*/ -
@Target(ElementType.METHOD) -
@Retention(RetentionPolicy.RUNTIME) -
public @interface DistriLimitAnno { -
public String limitKey() default "limit"; -
public int limit() default 1; -
}
然后对注解进行切面,在切面中判断是否超过limit,如果超过limit的时候就需要抛出异常exceeded limit,否则正常执行。
-
package com.hqs.distributedlock.aspect; -
-
import com.hqs.distributedlock.annotation.DistriLimitAnno; -
import com.hqs.distributedlock.limit.DistributedLimit; -
import lombok.extern.slf4j.Slf4j; -
import org.aspectj.lang.JoinPoint; -
import org.aspectj.lang.annotation.Aspect; -
import org.aspectj.lang.annotation.Before; -
import org.aspectj.lang.annotation.Pointcut; -
import org.aspectj.lang.reflect.MethodSignature; -
import org.springframework.beans.factory.annotation.Autowired; -
import org.springframework.context.annotation.EnableAspectJAutoProxy; -
import org.springframework.stereotype.Component; -
-
import java.lang.reflect.Method; -
-
/** -
* @author huangqingshi -
* @Date 2019-01-17 -
*/ -
@Slf4j -
@Aspect -
@Component -
@EnableAspectJAutoProxy(proxyTargetClass = true) -
public class LimitAspect { -
-
@Autowired -
DistributedLimit distributedLimit; -
-
@Pointcut("@annotation(com.hqs.distributedlock.annotation.DistriLimitAnno)") -
public void limit() {}; -
-
@Before("limit()") -
public void beforeLimit(JoinPoint joinPoint) throws Exception { -
MethodSignature signature = (MethodSignature) joinPoint.getSignature(); -
Method method = signature.getMethod(); -
DistriLimitAnno distriLimitAnno = method.getAnnotation(DistriLimitAnno.class); -
String key = distriLimitAnno.limitKey(); -
int limit = distriLimitAnno.limit(); -
Boolean exceededLimit = distributedLimit.distributedLimit(key, String.valueOf(limit)); -
if(!exceededLimit) { -
throw new RuntimeException("exceeded limit"); -
} -
} -
-
}
因为有抛出异常,这里我弄了一个统一的controller错误处理,如果controller出现Exception的时候都需要走这块异常。如果是正常的RunTimeException的时候获取一下,否则将异常获取一下并且输出。
-
package com.hqs.distributedlock.util; -
-
import lombok.extern.slf4j.Slf4j; -
import org.springframework.http.HttpStatus; -
import org.springframework.web.bind.annotation.ControllerAdvice; -
import org.springframework.web.bind.annotation.ExceptionHandler; -
import org.springframework.web.bind.annotation.ResponseBody; -
import org.springframework.web.bind.annotation.ResponseStatus; -
import org.springframework.web.context.request.NativeWebRequest; -
-
import javax.servlet.http.HttpServletRequest; -
import java.util.HashMap; -
import java.util.Map; -
-
/** -
* @author huangqingshi -
* @Date 2019-01-17 -
* 统一的controller错误处理 -
*/ -
@Slf4j -
@ControllerAdvice -
public class UnifiedErrorHandler { -
private static Map<String, String> res = new HashMap<>(2); -
-
@ExceptionHandler(value = Exception.class) -
@ResponseStatus(HttpStatus.OK) -
@ResponseBody -
public Object processException(HttpServletRequest req, Exception e) { -
res.put("url", req.getRequestURL().toString()); -
-
if(e instanceof RuntimeException) { -
res.put("mess", e.getMessage()); -
} else { -
res.put("mess", "sorry error happens"); -
} -
return res; -
} -
-
}
好了,接下来将注解写到自定义的controller上,limit的大小为10,也就是10秒钟内限制10次访问。
-
@PostMapping("/distributedLimit") -
@ResponseBody -
@DistriLimitAnno(limitKey="limit", limit = 10) -
public String distributedLimit(String userId) { -
log.info(userId); -
return "ok"; -
}
也是来一段Test方法来跑,老方式100个线程开始跑,只有10次,其他的都是limit。没有问题。

总结一下,这次实现采用了使用lua脚本和Redis实现了锁和限流,但是真实使用的时候还需要多测试,另外如果此次Redis也是采用的单机实现方法,使用集群的时候可能需要改造一下。
关于锁这块其实Reids自己也实现了RedLock, java实现的版本Redission。也有很多公司使用了,功能非常强大。各种场景下都用到了。
1080

被折叠的 条评论
为什么被折叠?



