自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(274)
  • 收藏
  • 关注

原创 softmax理解

softmax函数能够将未规范化的预测变换为非负数并且总和为1,同时让模型保持 可导的性质。为了完成这一目标,我们首先对每个未规范化的预测求幂,这样可以确保输出非负。为了确保最终输出的概率值总和为1,我们再让每个求幂后的结果除以它们的总和。

2024-03-28 17:12:56 270

原创 jupyter notebook和jupyter lab 找不到虚拟环境

【代码】jupyter notebook和jupyter lab 找不到虚拟环境。

2024-03-23 14:15:09 388

原创 机器学习_推荐系统

我们从一个例子开始定义推荐系统的问题。

2024-03-20 20:30:03 296

原创 机器学习_聚类(Clustering)

你经常跟哪些人联系,而这些人又经常给哪些人发邮件,由此找到关系密切的人群。因此,这可能需要另一个聚类算法,你希望用它发现社交网络中关系密切的朋友。

2024-03-20 19:39:57 573

原创 支持向量机(SVM)

如果我们有两个数据,要让你画一根直线你需要怎么划分他们呢?上面画了三根直线来划分它,那如果是高纬度呢?怎么用高于三个维度的 超维度平面来区分这些呢?我们用二维数据来介绍一下,因为区分二维数据的方法有很多,就像我们上一个章节把两类划分,用了蓝色,红色,绿色,但是他们的间隔差距就不一样.(就如这个下面的图)这个间隔的正中,就是我们的决策边界.当有数据需要判断的时候,我们就根据它的相对决策边界的相对位置,来进行判断分类.

2024-03-20 19:20:27 684

原创 机器学习_类偏斜的误差度量

偏斜类(skewed classes)的问题。类偏斜情况表现为我们的训练集中有非常多的同一种类的实例,只有很少或没有其他类的实例。例如:我们希望用算法来预测癌症是否是恶性的,在我们的训练集中,只有 0.5%的实例是恶性肿瘤。假设我们编写一个非学习而来的算法,在所有情况下都预测肿瘤是良性的,那么误差只有 0.5%。然而我们通过训练而得到的神经网络算法却有 1%的误差。这时,误差的大小是不能视为评判算法效果的依据的。正确肯定(True Positive,TP):预测为真,实际为真。

2024-03-20 15:33:22 513

原创 机器学习_自我总结

我只是一个小白,很多东西写不好,也不是很懂只是记一下笔记对自己的映像更深,也希望有人能够指导我学习(谢谢!)诊断偏差和方差训练集误差和交叉验证集误差近似时:偏差/欠拟合交叉验证集误差远大于训练集误差时:方差/过拟合神经网络的方差和偏差:使用较小的神经网络,类似于参数较少的情况,容易导致高偏差和欠拟合,但计算代价较小使用较大的神经网络,类似于参数较多的情况,容易导致高方差和过拟合,虽然计算代价比较大,但是可以通过正则化手段来调整而更加适应数据。

2024-03-20 15:07:20 490

原创 机器学习_神经网络

为了构建神经网络模型,我们需要首先思考大脑中的神经网络是怎样的?每一个神经元都可以被认为是一个处理单元/神经核,它含有许多输入/树突,并且有一个输出/轴突。神经网络是大量神经元相互链接并通过电脉冲来交流的一个网络。我们设计出了类似于神经元的神经网络,效果如下:其中𝑥1, 𝑥2, 𝑥3是输入单元(input units),我们将原始数据输入给它们。𝑎1, 𝑎2, 𝑎3是中间单元,它们负责将数据进行处理,然后呈递到下一层。最后是输出单元,它负责计算ℎ𝜃(𝑥)。

2024-03-20 14:21:49 634

原创 机器学习_正则化

第一个模型是一个线性模型,欠拟合,不能很好地适应我们的训练集;第三个模型是一个四次方的模型,过于强调拟合原始数据,而丢失了算法的本质:预测新数据。出,若给出一个新的值使之预测,它将表现的很差,是过拟合,虽然能非常好地适应我们的训练集但在新输入变量进行预测时可能会效果不好;而中间的模型似乎最合适。如果我们有非常多的特征,我们通过学习得到的假设可能能够非常好地适应训练集(代价函数可能几乎为 0),但是可能会不能推广到新的数据。就以多项式理解,𝑥 的次数越高,拟合的越好,但相应的预测的能力就可能变差。

2024-03-18 13:54:08 518

原创 机器学习_聚类(k-means)

文章目录聚类步骤k-means APIKmeans性能评估指标Kmeans性能评估指标API聚类步骤k-means通常被称为劳埃德算法,这在数据聚类中是最经典的,也是相对容易理解的模型。算法执行的过程分为4个阶段。1.首先,随机设K个特征空间内的点作为初始的聚类中心。2.然后,对于根据每个数据的特征向量,从K个聚类中心中寻找距离最近的一个,并且把该数据标记为这个聚类中心。3.接着,在所有的数据都被标记过聚类中心之后,根据这些数据新分配的类簇,通过取分配给每个先前质心的所有样本的平均值来创建新的质

2024-03-18 10:36:20 1131

原创 机器学习_逻辑回归

文章目录

2024-03-18 10:35:49 324

原创 机器学习-逻辑回归

逻辑回归是用与分类问题的 ,比如说 一个人是否 是男的,要么是 要么不是.

2024-03-17 20:59:39 686 1

原创 机器学习_线性回归

文章目录线性回归的定义损失函数(误差大小)梯度下降算法梯度下降的API(LinearRegression)最小二乘法之正规方程线性回归的定义线性回归的定义是:目标值预期是输入变量的线性组合。线性模型形式简单、易于建模,但却蕴含着机器学习中一些重要的基本思想。线性回归,是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。优点:结果易于理解,计算不复杂缺点:对非线性的数据拟合不好适用数据类型:数值型和标称型对于单变量线性回归,例如:前面房价

2024-03-17 20:48:46 941

原创 机器学习-线性回归

我想找到它的最小值,首先初始化我的梯度下降算法,在那个品红色的点初始化,如果我更新一步梯度下降,也许它会带我到这个点,因为这个点的导数是相当陡的。然后我想再梯度下降一步,在这个绿点,我自然会用一个稍微跟刚才在那个品红点时比,再小一点的一步,到了新的红色点,更接近全局最低点了,因此这点的导数会比在绿点时更小。然后你就可以联想到,如果是其他参数很多的时候 这个时候你就可以把X 想象成一个向量,你自己也就可以拥有跟多的参数,而原理和上面的两个参数的原理也是一样的了.(如何实现它能够尽量的接近呢?

2024-03-17 20:23:25 1573 1

原创 KMP算法

一种用于字符串匹配的快速算法。该算法的核心在于利用已经匹配过的信息,避免不必要的字符比较,从而提高匹配效率。其中的一个关键部分是计算next数组,它用于指示在匹配失败时,应该将模式串向右移动多少位。

2024-03-07 12:41:32 394

原创 SpringCloud Bus动态刷新全局广播

bus/refresh请求不再发送到具体的服务实例上,而是发给config server并通过destination参数类指定需要更新配置的服务或实例。发送一次:curl -X POST “http://localhost:3344/actuator/bus-refresh”演示广播效果,增加复杂度,再以3355为模板再制作一个3366。实现了只通知3355 不通知3366。只通知3355 不通知3366。结果:三个都修改了!不想全部通知,只想定点通知。然后再Gitee里面修改。

2024-01-24 03:38:53 524

原创 RabbitMQ环境配置

进入RabbitMQ安装目录下的sbin目录。输入账号密码并登录:guest guest。输入以下命令启动管理功能。

2024-01-24 03:16:36 805

原创 SpringCloud Config分布式配置中心

微服务意味着要将单体应用中的业务拆分成一个个子服务,每个服务的粒度相对较小,因此系统中会出现大量的服务。由于每个服务都需要必要的配置信息才能运行,所以一套集中式的、动态的配置管理设施是必不可少的。SpringCloud提供了ConfigServer来解决这个问题,我们每一个微服务自己带着一个application.yml,上百个配置文件的管理…不同环境不同配置,动态化的配置更新,分环境部署比如dev/test/prod/beta/release。

2024-01-24 02:07:18 967

原创 springcloud Gateway网关

Gateway是在Spring生态系统之上构建的API网关服务,基于Spring 5,Spring Boot 2和 Project Reactor等技术。Gateway旨在提供一种简单而有效的方式来对API进行路由,以及提供一些强大的过滤器功能, 例如:熔断、限流、重试等。

2024-01-23 15:23:40 1047

原创 springcloud Hystrix断路器

Hystrix是一个用于处理分布式系统的延迟和容错的开源库,在分布式系统里,许多依赖不可避免的会调用失败,比如超时、异常等,Hystrix能够保证在一个依赖出问题的情况下,不会导致整体服务失败,避免级联故障,以提高分布式系统的弹性。

2024-01-22 03:03:52 897

原创 Jmeter下载与安装

然后解压包放在你需要放的位置(并记住它的位置)

2024-01-22 00:05:23 558

原创 springcloud OpenFeign服务接口调用

Feign是一个声明式WebService客户端。使用Feign能让编写Web Service客户端更加简单。它的使用方法是定义一个服务接口然后在上面添加注解。Feign也支持可拔插式的编码器和解码器。Spring Cloud对Feign进行了封装,使其支持了Spring MVC标准注解和HttpMessageConverters。Feign可以与Eureka和Ribbon组合使用以支持负载均衡。

2024-01-19 03:37:43 575

原创 springcloud Ribbon负载均衡服务调用

Spring Cloud Ribbon是基于Netflix Ribbon实现的一套客户端 负载均衡的工具。简单的说,Ribbon是Netflix发布的开源项目,主要功能是提供客户端的软件负载均衡算法和服务调用。Ribbon客户端组件提供一系列完善的配置项如连接超时,重试等。简单的说,就是在配置文件中列出Load Balancer(简称LB)后面所有的机器,Ribbon会自动的帮助你基于某种规则(如简单轮询,随机连接等)去连接这些机器。我们很容易使用Ribbon实现自定义的负载均衡算法。

2024-01-19 02:49:04 629

原创 springcloud Consul服务注册与发现

Consul 是一套开源的分布式服务发现和配置管理系统,由 HashiCorp 公司用 Go 语言开发。提供了微服务系统中的服务治理、配置中心、控制总线等功能。这些功能中的每一个都可以根据需要单独使用,也可以一起使用以构建全方位的服务网格,总之Consul提供了一种完整的服务网格解决方案。它具有很多优点。包括: 基于 raft 协议,比较简洁;支持健康检查, 同时支持 HTTP 和 DNS 协议 支持跨数据中心的 WAN 集群 提供图形界面 跨平台,支持 Linux、Mac、Windows。

2024-01-18 03:58:21 461

原创 SpringCloud整合Zookeeper代替Eureka案例

zookeeper是一个分布式协调工具,可以实现注册中心功能关闭Linux服务器防火墙后启动zookeeper服务器zookeeper服务器取代Eureka服务器,zk作为服务注册中心。

2024-01-18 02:19:11 776

原创 springcloud Eureka服务注册与发现

Spring Cloud 封装了 Netflix 公司开发的 Eureka 模块来实现服务治理Eureka采用了CS的设计架构,Eureka Server 作为服务注册功能的服务器,它是服务注册中心。而系统中的其他微服务,使用 Eureka的客户端连接到 Eureka Server并维持心跳连接。这样系统的维护人员就可以通过 Eureka Server 来监控系统中各个微服务是否正常运行。在服务注册与发现中,有一个注册中心。

2024-01-17 17:40:32 1357

原创 springcloud Client端cloud-consumer-order80

这个是和之前的8001相互配合端口测试 这里的80的用户测试端口。

2024-01-17 01:06:06 472

原创 springcloud-cloud provider-payment8001微服务提供者支付Module模块

微服务cloud整体聚合父工程Project。post请求需要用postman。

2024-01-13 18:06:22 537

原创 Docker-compose容器编排

如果我需要同时部署好多个服务,难道要每个服务单独写Dockerfile然后在构建镜像,构建容器,这样累都累死了,所以docker官方给我们提供了docker-compose多服务部署的工具。例如要实现一个Web微服务项目,除了Web服务容器本身,往往还需要再加上后端的数据库mysql服务容器,redis服务器,注册中心eureka,甚至还包括负载均衡容器等等。官网:https://docs.docker.com/compose/compose-file/compose-file-v3/

2024-01-11 02:20:12 1076

原创 docker网络

ens33lovirbr0在CentOS7的安装过程中如果有选择相关虚拟化的的服务安装系统后,启动网卡时会发现有一个以网桥连接的私网地址的virbr0网卡(virbr0网卡:它还有一个固定的默认IP地址192.168.122.1),是做虚拟机网桥的使用的,其作用是为连接其上的虚机网卡提供 NAT访问外网的功能。将libvirtd服务卸载docker启动后,网络情况会产生一个名为docker0的虚拟网桥默认创建3大网络模式All命令Commands:查看网络查看网络源数据。

2024-01-10 22:04:14 905

原创 docker微服务案例

我最近发现因为版本的迭代更新,官网和Spring Initializr 不能建立boot2了,所有项目必须自己手动建立。直接建立一个Maven 项目 然后在添加相关的文件和上述一样不过这些文件都需要你自己加进去。1.IDEA工具里面搞定微服务jar包。1.建立module。

2024-01-10 20:59:36 1489

原创 docker之dockerFile

Dockerfile是用来构建Docker镜像的文本文件,是由一条条构建镜像所需的指令和参数构成的脚本。构建三步骤1 .编写Dockerfile文件 2 .docker build命令构建镜像 3 .docker run依镜像运行容器实例。

2024-01-10 13:50:59 1226

原创 docker完成redis 三主三从

命令:redis-cli --cluster add-node ip:新slave端口 ip:新master端口 --cluster-slave --cluster-master-id 新主机节点ID。redis-cli --cluster add-node 自己实际IP地址:6387 自己实际IP地址:6381。命令:redis-cli --cluster del-node ip:从机端口 从机6388节点ID。redis-cli --cluster check 真实ip地址:6381。

2024-01-07 01:58:56 1155

原创 docker 完成MySQL的主从复制

3.进入/mydata/mysql-master/conf目录下新建my.cnf。8./mydata/mysql-slave/conf目录下新建my.cnf。6.master容器实例内创建数据同步用户。5.进入mysql-master容器。11.进入mysql-slave容器。主机新建库-使用库-新建表-插入数据。10.在主数据库中查看主从同步状态。13.在从数据库中查看主从同步状态。15,查看从数据库状态发现已经同步。12.在从数据库中配置主从复制。14,在从数据库中开启主从同步。从机使用库-查看记录。

2024-01-06 22:44:46 862

原创 Docker容器数据卷

将docker容器内的数据保存进宿主机的磁盘中将运用与运行的环境打包镜像,run后形成容器实例运行 ,但是我们对数据的要求希望是持久化的Docker容器产生的数据,如果不备份,那么当容器实例删除后,容器内的数据自然也就没有了。为了能保存数据在docker中我们使用卷。数据卷可在容器之间共享或重用数据卷中的更改可以直接实时生效数据卷中的更改不会包含在镜像的更新中数据卷的生命周期一直持续到没有容器使用它为止。

2023-12-26 22:13:33 113

原创 docker 将本地镜像推送到私有库

默认情况,仓库被创建在容器的/var/lib/registry目录下,建议自行用容器卷映射,方便于宿主机联调。我们自己commit构建的新镜像,新增加了ifconfig功能,可以成功使用。重启docker 并开启registry。有的时候报错是因为没有设置tag。命令:在容器外执行,记得。

2023-12-26 21:55:36 542

原创 将本地镜像推送到阿里云

利用下面的脚本进行配置。

2023-12-26 20:47:26 128

原创 Docker常用命令

exec 是在容器中打开新的终端,并且可以启动新的进程.用exit退出,不会导致容器的停止。attach 直接进入容器启动命令的终端,不会启动新的进程exit退出,会导致容器的停止。-d: 后台运行容器并返回容器ID,也即启动守护式容器(后台运行);-t:为容器重新分配一个伪输入终端,通常与 -i 同时使用;-i:以交互模式运行容器,通常与 -t 同时使用;-a :列出当前所有正在运行的容器+历史上运行过的。命令,因为退出容器终端,不会导致容器的停止。-q :静默模式,只显示容器编号。

2023-12-26 19:29:41 83

原创 centos 安装docker

2.下载c /c++的环境3…按照需要的安装软件包设置stable镜像仓库官网的是下面的,如果是在国内最好避开,因为这样会很慢最好用阿里云的镜像更新yum软件包索引安装docker7.启动docker卸载阿里云加速这里只能用个人的.(个人的免费)将上面命令在centos运行

2023-12-26 18:37:45 63

原创 SpringBoot3-核心原理

场景:抽取聊天机器人场景,它可以打招呼。效果:任何项目导入此starter都具有打招呼功能,并且问候语中的人名需要可以在配置文件中修改● 1. 创建自定义starter项目,引入spring-boot-starter基础依赖● 2. 编写模块功能,引入模块所有需要的依赖。● 3. 编写xxxAutoConfiguration自动配置类,帮其他项目导入这个模块需要的所有组件。

2023-12-23 20:43:47 189

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除