Anaconda配置多spyder多python环境

一、预操作

查看目前的conda版本:

conda --version
 由于之前安装的版本,配置以前打算将软件更新.

conda update conda
conda update anaconda

  conda对于环境的管理,主要有:

查看当前环境

conda info -e
  其中带*为当前使用的版本,
在这里插入图片描述

创建环境

conda create --name test_py2 python=2.7 #创建python2.7的环境,对应文件夹名称:test_py2
  该指令的作用:python2.7包创建一个新的环境,位置在/envs/test_py2
在这里插入图片描述

激活环境

activate test_py2
复制环境

conda create --name flowers --clone snowflakes
上述指令将创建一个与snowflakes相同的环境,名为flowers。

删除环境

conda remove -n test_py2 --all
  如果配置环境发生错误,可以删除重新开始。

配置好环境后,可以通过

python --version
  查看当前的版本:

在这里插入图片描述

二、spyder配置

虽然命令窗实现了Python不同版本的自由切换,但spyder打开之后始终是python3.5,这是因为python2.7没有安装spyder,需要在不同环境下都安装才可以。

这里用到conda的几个指令:

查看目前安装包
1
conda list
  例如activate test_py2之后,输入conda list,发现没有spyder一项,这就需要

搜索安装包在这里插入图片描述

例如搜索美丽汤(beautifulsoup4):

找到合适的版本,进行安装:

安装工具包
1
conda install spyder
  安装spyder。如果无法直接安装,可以通过搜索工具包所在的网址进行安装,以下载bottleneck为例:

1
conda install --channel https://conda .anaconda.ort/pandas bottleneck
 这样需要何种工具包,对应下载安装就可以了。至此完成Anaconda多spyder多python环境的配置。

这样在命令框,按两步进行操作:

步骤一:activate到指定的python版本;
在这里插入图片描述

步骤二:紧接著输入spyder,运行。

参考:https://www.cnblogs.com/xingshansi/p/6725298.html

### 如何在 Anaconda 中设置 PyTorch 环境并集成到 Spyder IDE #### 创建虚拟环境 为了确保项目的独立性和稳定性,建议创建一个新的 Conda 虚拟环境。以下是具体的操作方式: ```bash conda create -n pytorch_env python=3.9 ``` 激活该虚拟环境以便后续安装依赖项。 ```bash conda activate pytorch_env ``` #### 安装 PyTorch 根据目标平台和硬件支持情况(CPU 或 GPU),可以选择合适的 PyTorch 版本进行安装。对于 CPU 支持版本,可以直接运行以下命令[^1]: ```bash conda install pytorch torchvision torchaudio cpuonly -c pytorch ``` 如果需要 GPU 加速的支持,则需指定 CUDA 的版本号。例如,针对 CUDA 11.7 可以执行如下命令: ```bash conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia ``` 验证 PyTorch 是否正确安装以及是否能够检测到可用的 GPU 设备。 ```python import torch print(torch.cuda.is_available()) # 如果返回 True 则表示成功识别 GPU ``` #### 下载并配置 Spyder Spyder 是一款功能强大的 Python 开发工具,在新创建的虚拟环境中也可以轻松启用它。有几种途径实现这一点;一种简便的方法是从终端直接安装 Spyder 并启动之。 ```bash conda install spyder -c conda-forge ``` 一旦完成上述步骤之后就可以正常调用 `spyder` 命令打开应用程序界面,并且内部会自动加载当前活动虚拟环境里的所有包资源。 另外还有一种更灵活的手动关联方法适用于已经存在的其他非默认路径下的解释器实例场景下使用特定版本库文件夹作为项目工作区的一部分时特别有用。这涉及到调整偏好设定菜单内的Python Interpreter选项卡相关内容指向至对应位置即可生效[^2]。 #### 测试环境连通性 最后一步是在实际编码过程中确认两者之间的协作无误。可以在新建脚本窗口输入简单的张量运算测试代码片段观察其表现形式是否符合预期效果。 ```python import torch x = torch.rand(5, 3) print(x) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值