%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
# 生成训练样本
n_dots = 40
X = 5 * np.random.rand(n_dots, 1)
y = np.cos(X).ravel()
# 添加一些噪声
y += 0.2 * np.random.rand(n_dots) - 0.1
# 训练模型
from sklearn.neighbors import KNeighborsRegressor
k = 5
本文详细介绍了如何利用sklearn库中的KNN算法进行回归拟合。通过实例展示了数据预处理、模型训练、预测及效果评估的完整流程,帮助读者掌握KNN在回归问题中的应用。
最低0.47元/天 解锁文章
839

被折叠的 条评论
为什么被折叠?



