单用户MIMO系统(一):信道信息在发端已知

单用户MIMO系统(一):信道信息在发端已知

关键词

MIMO单用户信道容量注水算法Matlab实现

基本介绍

本文介绍了单用户MIMO系统在发端知道信道状态信息时的系统速率优化算法(注水算法、CVX)并且给出了对应的Matlab实现。除了介绍发射机的设计方案外,也给出了对应的接收机的设计方案。

考虑图1所示的单用户MIMO系统,发射机配有 N t N_{\text t} Nt条射频链路,接收机配置有 N r N_{\text r} Nr条射频链路,无线信道可以用矩阵 H ∈ C N r × N t {\textbf H}\in{\mathbb C}^{N_{\text r}\times N_{\text t}} HCNr×Nt表示。接收机接收到的信号向量为: y = Hs + n , {\textbf y}={\textbf H}{\textbf s}+{\textbf n}, y=Hs+n,其中 s ∈ C N t × 1 {\textbf s}\in{\mathbb C}^{N_{\text t}\times 1} sCNt×1表示传输的信号向量, n ∼ C N ( 0 , σ 2 I N r ) {\textbf n}\sim{\mathcal{CN}}\left(0,\sigma^2{\textbf I}_{N_{\text r}}\right) nCN(0,σ2INr)表示接收侧加性噪声,系统传输速率可以表示为[1] R = log ⁡ det ⁡ ( I N r + 1 σ 2 H Φ H † ) , {\mathcal R}=\log\det\left({\textbf I}_{N_{\text r}}+\frac{1}{\sigma^2}{\textbf H}{\bm\Phi}{\textbf H}^{\dag}\right), R=logdet(INr+σ21HΦH),其中 Φ = E { s s † } {\bm\Phi}={\mathbb E}\left\{ {\textbf s}{\textbf s}^{\dag}\right\} Φ=E{ ss}表示发射信号的协方差矩阵, T r ( Φ ) {\rm{Tr}}\left(\bm\Phi\right) Tr(Φ)表示传输功率。

单用户MIMO传输系统框图图1:单用户MIMO传输系统框图

假设发送方与接收方都知道信道信息 H {\textbf H} H,那么可以对协方差矩阵进行设计使得传输速率最大,即: P 0 : Φ ⋆ = arg ⁡ max ⁡ Φ ⪰ 0 log ⁡ det ⁡ ( I N r + 1 σ 2 H Φ H † ) . {\mathcal P}_0:{\bm\Phi}^{\star}=\arg\max_{ {\bm\Phi}\succeq{\textbf 0}}\log\det\left({\textbf I}_{N_{\text r}}+\frac{1}{\sigma^2}{\textbf H}{\bm\Phi}{\textbf H}^{\dag}\right). P0:Φ=argΦ0maxlogdet(INr+σ21HΦH).上述问题难以直接进行求解,对信道矩阵先进行奇异值分解,得到 H = U r Λ U t {\textbf H}={\textbf U}_{\text r}{\bm\Lambda}{\textbf U}_{\text t} H=UrΛUt,其中 Λ ∈ C N r × N t {\bm\Lambda}\in{\mathbb C}^{N_{\text r}\times N_{\text t}} ΛCNr×Nt是一个对角阵, U r ∈ C N r × N r {\textbf U}_{\text r}\in{\mathbb C}^{N_{\text r}\times N_{\text r}} UrCNr×Nr U t ∈ C N t × N t {\textbf U}_{\text t}\in{\mathbb C}^{N_{\text t}\times N_{\text t}} UtCNt×Nt为酉矩阵。首先,利用奇异值分解以及Sylvester行列式等式 log ⁡ det ⁡ ( I + AB ) = log ⁡ det ⁡ ( I + BA ) \log\det\left({\textbf I}+{\textbf A}{\textbf B}\right)=\log\det\left({\textbf I}+{\textbf B}{\textbf A}\right) logdet(I+AB)=logdet(I+BA),可以得到:
R = log ⁡ det ⁡ ( I N r + 1 σ 2 H Φ H † ) = log ⁡ det ⁡ ( I N t + 1 σ 2 H † H Φ ) = log ⁡ det ⁡ ( I N t + 1 σ 2 U t † Λ † Λ U t Φ ) = log ⁡ det ⁡ ( I N t + 1 σ 2 Λ † Λ U t Φ U t † ) . \begin{aligned} {\mathcal R}&=\log\det\left({\textbf I}_{N_{\text r}}+\frac{1}{\sigma^2}{\textbf H}{\bm\Phi}{\textbf H}^{\dag}\right) =\log\det\left({\textbf I}_{N_{\text t}}+\frac{1}{\sigma^2}{\textbf H}^{\dag}{\textbf H}{\bm\Phi}\right)\\ &=\log\det\left({\textbf I}_{N_{\text t}}+\frac{1}{\sigma^2}{\textbf U}_{\text t}^{\dag}{\bm\Lambda}^{\dag}{\bm\Lambda}{\textbf U}_{\text t}{\bm\Phi}\right) =\log\det\left({\textbf I}_{N_{\text t}}+\frac{1}{\sigma^2} {\bm\Lambda}^{\dag}{\bm\Lambda}{\textbf U}_{\text t}{\bm\Phi}{\textbf U}_{\text t}^{\dag} \right)\end{aligned}. R=logdet(INr+σ21HΦH)=logdet(INt+σ21HHΦ)=logdet(INt+σ21UtΛΛUtΦ)=logdet(INt+σ21ΛΛUtΦUt).基于上述关系,将之前定义的速率优化问题写为: P 1 : Φ ⋆ = arg ⁡ max ⁡ Φ ⪰ 0 log ⁡ det ⁡ ( I N t + 1 σ 2 Λ † Λ U t Φ U t † ) . {\mathcal P}_1:{\bm\Phi}^{\star}=\arg\max_{ {\bm\Phi}\succeq{\textbf 0}}\log\det\left({\textbf I}_{N_{\text t}}+\frac{1}{\sigma^2} {\bm\Lambda}^{\dag}{\bm\Lambda}{\textbf U}_{\text t}{\bm\Phi}{\textbf U}_{\text t}^{\dag}\right). P1:Φ=argΦ0maxlogdet(INt+σ21ΛΛUtΦUt).

作为协方差矩阵, Φ {\bm\Phi} Φ必定是个厄尔米特矩阵,满足 Φ = Φ † {\bm\Phi}={\bm\Phi}^{\dag} Φ=Φ,对 Φ {\bm\Phi} Φ进行特征值分解(此时也就是奇异值分解),为 Φ = W † Ω W {\bm\Phi}={\textbf W}^{\dag}{\bm\Omega}{\textbf W} Φ=WΩW,因此 Φ {\bm\Phi} Φ的优化可以等价为 W {\textbf W} W Ω {\bm\Omega} Ω的联合优化。注意 W {\textbf W} W是个酉矩阵, Ω {\bm\Omega} Ω是个对角矩阵且满足 T r ( Ω ) = T r ( Φ ) {\rm{Tr}}\left(\bm\Omega\right)={\rm{Tr}}\left(\bm\Phi\right) Tr(Ω)=Tr(Φ)。可以看出, Φ {\bm\Phi} Φ就是功率分配矩阵,而 W {\textbf W} W就是预编码矩阵。直观来看,最优的 Φ {\bm\Phi} Φ应该满足某些结构上的特性,猜测最优的 W {\textbf W} W满足 W = U t {\textbf W}={\textbf U}_{\text t} W=Ut。现在,抛开 Φ {\bm\Phi} Φ的结构特性不管(也就是不再认为它是一个对角矩阵),以此为基础,将速率优化问题写为: P 2 : Δ ⋆ = arg ⁡ max ⁡ Δ ⪰ 0 log ⁡ det ⁡ ( I N t + 1 σ 2 Λ † Λ U t U t † Δ U t U t † ) = arg ⁡ max ⁡ Δ ⪰ 0 log ⁡ det ⁡ ( I N t + 1 σ 2 Λ † Λ Δ ) = arg ⁡ max ⁡ Δ ⪰ 0 log ⁡ det ⁡ ( I N t + 1 σ 2 Γ Δ Γ † ) , \begin{aligned} {\mathcal P}_2:{\bm\Delta}^{\star}&=\arg\max_{ {\bm\Delta}\succeq{\textbf 0}}\log\det\left({\textbf I}_{N_{\text t}}+\frac{1}{\sigma^2} {\bm\Lambda}^{\dag}{\bm\Lambda}{\textbf U}_{\text t}{\textbf U}_{\text t}^{\dag}{\bm\Delta}{\textbf U}_{\text t}{\textbf U}_{\text t}^{\dag}\right)\\ &=\arg\max_{ {\bm\Delta}\succeq{\textbf 0}}\log\det\left({\textbf I}_{N_{\text t}}+\frac{1}{\sigma^2} {\bm\Lambda}^{\dag}{\bm\Lambda}{\bm\Delta}\right)\\ &=\arg\max_{ {\bm\Delta}\succeq{\textbf 0}}\log\det\left({\textbf I}_{N_{\text t}}+ \frac{1}{\sigma^2} {\bm\Gamma}{\bm\Delta}{\bm\Gamma}^{\dag}\right) \end{aligned}, P2:Δ=argΔ0maxlogdet(INt+σ21ΛΛUtUtΔUtUt)=argΔ0maxlogdet(INt+σ21ΛΛΔ)=argΔ0maxlogdet(INt+σ21ΓΔΓ),其中 Γ ∈ C N t × N t {\bm\Gamma}\in{\mathbb C}^{N_{\text t}\times N_{\text t}} ΓCNt×Nt为对角矩阵,满足 Γ † Γ = Λ † Λ {\bm\Gamma}^{\dag}{\bm\Gamma}={\bm\Lambda}^{\dag}{\bm\Lambda} ΓΓ=ΛΛ。如果最优的 W {\textbf W} W满足 W ⋆ = U t {\textbf W}^{\star}={\textbf U}_{\text t} W=Ut,那么问题 P 2 {\mathcal P}_2 P2的最优解 Δ ⋆ {\bm\Delta}^{\star} Δ必定是个对角矩阵,且最优的 Ω {\bm\Omega} Ω等于 Δ ⋆ {\bm\Delta}^{\star} Δ。如果 W ⋆ ≠ U t {\textbf W}^{\star}\neq{\textbf U}_{\text t} W=Ut,那么最优解 Δ ⋆ {\bm\Delta}^{\star} Δ必定满足 Δ ⋆ = U t A U t † {\bm\Delta}^{\star}={\textbf U}_{\text t}{\textbf A}{\textbf U}_{\text t}^{\dag} Δ=UtAUt,其中 A ⪰ 0 {\textbf A}\succeq{\textbf 0} A0是一个半正定矩阵。通过分析,可以得到下述定理:
定理1:问题

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值