最早由于做作业,结识了java的BigInrger类。读着读着,越来越觉得有趣。后来作业做完,也不忍丢下它,索性把全部代码研究一遍。
开始的时候,一个上午时间最多读懂2个方法。但是还是有滋有味的坚持了下来。下面开始一点点剖开它“隐藏”的秘密。
首先要想搞懂两个问题:BigIngeter类的目的——实现高精度数的存储和计算。基础的实现机理——用int型(32位)数组存储数据。(在代码的注释中有详细说明)
/
BigInteger类中的属性:{
int signum; 符号位,负数是为-1,零时为0,正数是为1
int[] mag;
The magnitude of this BigInteger,大数的值
//其他辅助变量暂时先不看
}
首先来分析下构造函数 (构造五部曲:1.检查是否符合标准 2.去零 3.mag赋值 4.去mag中零 5.符号位赋值)
1. 使用byte(8位)型数组构造BigInteger:
/
public BigInteger(byte[] val) {
if (val.length == 0)
throw new NumberFormatException("Zero length BigInteger"); //传入数组长度为零,报错
if (val[0] < 0) {
mag = makePositive(val);
signum = -1; //如果数组第一个值为负数,则将数组变正存入mag,signum赋-1
} else {
mag = stripLeadingZeroBytes(val); //如果非负,则可直接去掉前面无效零,再赋给mag
signum = (mag.length == 0 ? 0 : 1);
}
}
下面看一下具体调用的函数
///
private static int[] stripLeadingZeroBytes(byte a[]) {
int byteLength = a.length;
int keep;
// Find first nonzero byte
for (keep=0; keep<a.length && a[keep]==0; keep++) //找到第一个有效位,并用keep记录下
;
// Allocate new array and copy relevant part of input array
int intLength = ((byteLength - keep) + 3)/4; //计算int[]的长度,byte[1/2/3/4]对应int[1]
int[] result = new int[intLength];
int b = byteLength - 1;
for (int i = intLength-1; i >= 0; i--) {
result[i] = a[b--] & 0xff; //向int[]赋值,&0xff的作用是消除对int前24位的影响
(计算机中使用补码存储数据,如果直接将一个第一位为“1”的byte值赋给int,则前24为将为“1”)
int bytesRemaining = b - keep + 1;
int bytesToTransfer = Math.min(3, bytesRemaining);
for (int j=8; j <= 8*bytesToTransfer; j += 8)
result[i] |= ((a[b--] & 0xff) << j); //进行移位,每次移动8位,再进行或运算
}
return result;
}
//
private static int[] makePositive(byte a[]) {
int keep, k;
int byteLength = a.length;
// Find first non-sign (0xff) byte of input
for (keep=0; keep<byteLength && a[keep]==-1; keep++) //找出非符号位(此处我看了很久才看懂)。若a[]=-1,即计算机中二进制为“11111111”,在int型中全为“1”的前几位被认为是符号位。要想转换成正的int值,只需要后几位即可。
;
for (k=keep; k<byteLength && a[k]==0; k++)
//由于传入参数数组第一个值必为负(由构造函数可得),所以不必考虑去零,变量k的作用只是判断需要“额外”位
;
int extraByte = (k==byteLength) ? 1 : 0;
//如果除符号位以外的全部为“0”,则需要“额外”1位来存储数据
int intLength = ((byteLength - keep + extraByte) + 3)/4;
int result[] = new int[intLength];
int b = byteLength - 1;
for (int i = intLength-1; i >= 0; i--) {
result[i] = a[b--] & 0xff;
int numBytesToTransfer = Math.min(3, b-keep+1);
if (numBytesToTransfer < 0)
numBytesToTransfer = 0;
for (int j=8; j <= 8*numBytesToTransfer; j += 8)
result[i] |= ((a[b--] & 0xff) << j);
// Mask indicates which bits must be complemented
int mask = -1 >>> (8*(3-numBytesToTransfer));
//将负值变为正值,即由原码转反码
result[i] = ~result[i] & mask;
}
// Add one to one's complement to generate two's complement
for (int i=result.length-1; i>=0; i--) {
result[i] = (int)((result[i] & LONG_MASK) + 1);
//long LONG_MASK = 0xffffffffL;为了进行位运算而不考虑int符号问题
if (result[i] != 0)
//(这个地方也把我蒙骗了好久)突然恍悟,其实就是+1后不为零,即不需要进位,就break退出吧!
break;
}
return result;
}
2.
使用int(32位)型数组构造BigInteger:
/
private BigInteger(int[] val) {
if (val.length == 0)
throw new NumberFormatException("Zero length BigInteger");
if (val[0] < 0) {
mag = makePositive(val);
signum = -1;
} else {
mag = trustedStripLeadingZeroI
nts(val);
signum = (mag.length == 0 ? 0 : 1);
}
}
与byte[]构造原理相同,并且更为简单,不重述。有一点说明,这里使用trustedStripLeadingZeroI
nts可信赖的去零方法,与StripLeadingZeroInts的区别在于,对于可信赖的去零方法,如果没有无效零,则直接返回原数组,不进行复制。